Multicentric Carpotarsal Osteolysis: a Contemporary Perspective on the Unique Skeletal Phenotype

•• Tsunakawa Y, Hamada M, Matsunaga Y, Fuseya S, Jeon H, Wakimoto Y, et al. Mice harboring an MCTO mutation exhibit renal failure resembling nephropathy in human patients. Exp Anim 2019;68(1):103-11. https://doi.org/10.1538/expanim.18-0093. This paper reports the generation of a mouse harboring a human MCTO mutation using CRISPR/Cas9 technology. The mice develop a renal phenotype that resembles nephropathy in patients with MCTO.

• Wu J, Wang L, Xu Y, Zhang Z, Yan X, An Y, et al. Multicentric carpo-tarsal osteolysis syndrome mimicking juvenile idiopathic arthritis: two case reports and review of the literature. Front Pediatr 2021;9:745812. Overview of the clinical and genetic features of 51 published cases of genetically confirmed MCTO.

Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics. 1999;59(3):275–81.

Article  CAS  Google Scholar 

•• Zankl A, Duncan EL, Leo PJ, Clark GR, Glazov EA, Addor MC, et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am J Hum Genet 2012;90(3): 494-501. This paper identified MAFB as the genetic basis for MCTO.

Tsuchiya M, Misaka R, Nitta K, Tsuchiya K. Transcriptional factors, Mafs and their biological roles. World J Diabetes. 2015;6(1):175–83. https://doi.org/10.4239/wjd.v6.i1.175.

Article  Google Scholar 

Katsuoka F, Yamamoto M. Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene. 2016;586(2):197–205.

Article  CAS  Google Scholar 

Kataoka K, Noda M, Nishizawa M. Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol. 1994;14(1):700–12.

CAS  Google Scholar 

Wu Z, Nicoll M, Ingham RJ. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol. 2021;10(1):4.

Article  CAS  Google Scholar 

Takahashi S. Functional analysis of large MAF transcription factors and elucidation of their relationships with human diseases. Exp Anim. 2021;70(3):264–71.

Article  CAS  Google Scholar 

Mehawej C, Courcet JB, Baujat G, Mouy R, Gerard M, Landru I, et al. The identification of MAFB mutations in eight patients with multicentric carpo-tarsal osteolysis supports genetic homogeneity but clinical variability. Am J Med Genet A 2013;161a(12): 3023-3029.

Zhuang L, Adler S, Aeberli D, Villiger PM, Trueb B. Identification of a MAFB mutation in a patient with multicentric carpotarsal osteolysis. Swiss Med Wkly. 2017;147:w14529.

Google Scholar 

Chen K, Zamariolli M, Soares MFF, Meloni VA, Melaragno MI. Multicentric carpotarsal osteolysis syndrome in a mother and daughter with a MAFB missense variant and natural history of the disease. Mol Syndromol. 2022;13(1):50–5.

Article  Google Scholar 

Li J, Shi L, Lau K, Ma Y, Jia S, Gao X. Identification of a novel mutation in the MAFB gene in a pediatric patient with multicentric carpotarsal osteolysis syndrome using next-generation sequencing. Eur J Med Genet. 2020;63(6):103902.

Article  Google Scholar 

Mumm S, Huskey M, Duan S, Wenkert D, Madson KL, Gottesman GS, et al. Multicentric carpotarsal osteolysis syndrome is caused by only a few domain-specific mutations in MAFB, a negative regulator of RANKL-induced osteoclastogenesis. Am J Med Genet A 2014;164a(9): 2287-2293.

Choochuen P, Rojneuangnit K, Khetkham T, Khositseth S. The first report of multicentric carpotarsal osteolysis syndrome caused by MAFB mutation in Asian. Case Rep Med 2018: 6783957.

Upadia J, Gomes A, Weiser P, Descartes M. A familial case of multicentric carpotarsal osteolysis syndrome and treatment outcome. J Pediatr Genet. 2018;7(4):174–9.

Article  Google Scholar 

Regev R, Sochett EB, Elia Y, Laxer RM, Noone D, Whitney-Mahoney K, Filipowski K, Shamas A, Vali R. Multicentric carpotarsal osteolysis syndrome (MCTO) with generalized high bone turnover and high serum RANKL: Response to denosumab. Bone Rep. 2021;14:100747.

Article  CAS  Google Scholar 

Dworschak GC, Draaken M, Hilger A, Born M, Reutter H, Ludwig M. An incompletely penetrant novel MAFB (p.Ser56Phe) variant in autosomal dominant multicentric carpotarsal osteolysis syndrome. Int J Mol Med. 2013;32(1):174–8.

Article  CAS  Google Scholar 

Sun K, Barlow B, Malik F, Inglis A, Figgie M, Goodman S. Total hip arthroplasty in a patient with multicentric carpotarsal osteolysis: a case report. Hss J. 2016;12(2):177–81.

Article  Google Scholar 

Park PG, Kim KH, Hyun HS, Lee CH, Park JS, Kie JH, Choi YH, Moon KC, Cheong HI. Three cases of multicentric carpotarsal osteolysis syndrome: a case series. BMC Med Genet. 2018;19(1):164.

Article  Google Scholar 

• Närhi A, Fernandes A, Toiviainen-Salo S, Harris J, McInerney-Leo A, Lazarus S, et al. A family with partially penetrant multicentric carpotarsal osteolysis due to gonadal mosaicism: first reported case. Am J Med Genet A 2021;185(8): 2477-2481. First reported case of partially penetrant MCTO due to genetic mosaicism.

Stajkovska A, Mehandziska S, Stavrevska M, Jakovleva K, Nikchevska N, Mitrev Z, Kungulovski I, Zafiroski G, Tasic V, Kungulovski G. Trio clinical exome sequencing in a patient with multicentric carpotarsal osteolysis syndrome: first case report in the Balkans. Front Genet. 2018;9:113.

Article  Google Scholar 

Ma NS. Symptoms of multicentric carpotarsal osteolysis respond to anti-inflammatory treatment. 2020 Annual Meeting of the American Society for Bone and Mineral Research Virtual Event September 11-15, 2020. J Bone Miner Res 2020 Nov;35 Suppl 1:S1-S349. https://doi.org/10.1002/jbmr.4206.

Han SI, Aramata S, Yasuda K, Kataoka K. MafA stability in pancreatic beta cells is regulated by glucose and is dependent on its constitutive phosphorylation at multiple sites by glycogen synthase kinase 3. Mol Cell Biol. 2007;27(19):6593–605. https://doi.org/10.1128/MCB.01573-06.

Article  CAS  Google Scholar 

Rocques N, Abou Zeid N, Sii-Felice K, Lecoin L, Felder-Schmittbuhl MP, Eychene A, et al. GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol Cell. 2007;28(4):584–97. https://doi.org/10.1016/j.molcel.2007.11.009.

Article  CAS  Google Scholar 

Herath NI, Rocques N, Garancher A, Eychene A, Pouponnot C. GSK3-mediated MAF phosphorylation in multiple myeloma as a potential therapeutic target. Blood Cancer J. 2014;4:e175. https://doi.org/10.1038/bcj.2013.67.

Article  CAS  Google Scholar 

Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza MT, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, et al. Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies. Am J Hum Genet. 2015;96(5):816–25. https://doi.org/10.1016/j.ajhg.2015.03.001.

Article  CAS  Google Scholar 

Bialkowska AB, Liu Y, Nandan MO, Yang VW. A colon cancer-derived mutant of Kruppel-like factor 5 (KLF5) is resistant to degradation by glycogen synthase kinase 3beta (GSK3beta) and the E3 ubiquitin ligase F-box and WD repeat domain-containing 7alpha (FBW7alpha). J Biol Chem. 2014;289(9):5997–6005. https://doi.org/10.1074/jbc.M113.508549.

Article  CAS  Google Scholar 

He P, Yang JW, Yang VW, Bialkowska AB. Kruppel-like factor 5, Increased in pancreatic ductal adenocarcinoma, promotes proliferation, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, and tumor growth in mice. Gastroenterology. 2018;154(5):1494–508 e13. https://doi.org/10.1053/j.gastro.2017.12.005.

Article  CAS  Google Scholar 

Chen Q, Dowhan DH, Liang D, Moore DD, Overbeek PA. CREB-binding protein/p300 co-activation of crystallin gene expression. J Biol Chem. 2002;277(27):24081–9.

Article  CAS  Google Scholar 

Guo S, Burnette R, Zhao L, Vanderford NL, Poitout V, Hagman DK, Henderson E, Özcan S, Wadzinski BE, Stein R. The stability and transactivation potential of the mammalian MafA transcription factor are regulated by serine 65 phosphorylation. J Biol Chem. 2009;284(2):759–65. https://doi.org/10.1074/jbc.M806314200.

Article  CAS  Google Scholar 

Benkhelifa S, Provot S, Nabais E, Eychene A, Calothy G, Felder-Schmittbuhl MP. Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol Cell Biol. 2001;21(14):4441–52. https://doi.org/10.1128/MCB.21.14.4441-4452.2001.

Article  CAS  Google Scholar 

Guo S, Vanderford NL, Stein R. Phosphorylation within the MafA N terminus regulates C-terminal dimerization and DNA binding. J Biol Chem. 2010;285(17):12655–61. https://doi.org/10.1074/jbc.M110.105759.

Article  CAS  Google Scholar 

He Y, Wang S, Tong J, Jiang S, Yang Y, Zhang Z, Xu Y, Zeng Y, Cao B, Moran MF, Mao X. The deubiquitinase USP7 stabilizes Maf proteins to promote myeloma cell survival. J Biol Chem. 2020;295(7):2084–96. https://doi.org/10.1074/jbc.RA119.010724.

Article  CAS  Google Scholar 

Giudicelli F, Gilardi-Hebenstreit P, Mechta-Grigoriou F, Poquet C, Charnay P. Novel activities of Mafb underlie its dual role in hindbrain segmentation and regional specification. Dev Biol. 2003;253(1):150–62. https://doi.org/10.1006/dbio.2002.0864.

Article  CAS  Google Scholar 

Vazquez-Echeverria C, Dominguez-Frutos E, Charnay P, Schimmang T, Pujades C. Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Dev Biol. 2008;322(1):167–78. https://doi.org/10.1016/j.ydbio.2008.07.025.

Article  CAS  Google Scholar 

Conrad E, Dai C, Spaeth J, Guo M, Cyphert HA, Scoville D, Carroll J, Yu WM, Goodrich LV, Harlan DM, Grove KL, Roberts CT Jr, Powers AC, Gu G, Stein R. The MAFB transcription factor impacts islet alpha-cell function in rodents and represents a unique signature of primate islet beta-cells. Am J Physiol Endocrinol Metab. 2016;310(1):E91–E102. https://doi.org/10.1152/ajpendo.00285.2015.

Article  Google Scholar 

Iacovazzo D, Flanagan SE, Walker E, Quezado R, de Sousa Barros FA, Caswell R, Johnson MB, Wakeling M, Brändle M, Guo M, Dang MN, Gabrovska P, Niederle B, Christ E, Jenni S, Sipos B, Nieser M, Frilling A, Dhatariya K, et al. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci USA. 2018;115(5):1027–32. https://doi.org/10.1073/pnas.1712262115.

Article  CAS  Google Scholar 

Hang Y, Stein R. MafA and MafB activity in pancreatic beta cells. Trends Endocrinol Metab. 2011;22(9):364–73. https://doi.org/10.1016/j.tem.2011.05.003.

Article  CAS  Google Scholar 

Miyatsuka T, Matsuoka TA, Kaneto H. Transcription factors as therapeutic targets for diabetes. Expert Opin Ther Targets. 2008;12(11):1431–42.

Article  CAS  Google Scholar 

Kamitani-Kawamoto A, Hamada M, Moriguchi T, Miyai M, Saji F, Hatamura I, Nishikawa K, Takayanagi H, Hitoshi S, Ikenaka K, Hosoya T, Hotta Y, Takahashi S, Kataoka K. MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development. J Bone Miner Res. 2011;26(10):2463–72. https://doi.org/10.1002/jbmr.458.

Article  CAS  Google Scholar 

Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol. 2002;249(1):16–29. https://doi.org/10.1006/dbio.2002.0751.

Article  CAS  Google Scholar 

Moriguchi T, Hamada M, Morito N, Terunuma T, Hasegawa K, Zhang C, Yokomizo T, Esaki R, Kuroda E, Yoh K, Kudo T, Nagata M, Greaves DR, Engel JD, Yamamoto M, Takahashi S. MafB is essential for renal development and F4/80 expression in macrophages. Mol Cell Biol. 2006;26(15):5715–27. https://doi.org/10.1128/mcb.00001-06.

Article  CAS  Google Scholar 

Brunskill EW, Georgas K, Rumballe B, Little MH, Potter SS. Defining the molecular character of the developing and adult kidney podocyte. PLoS One. 2011;6(9):e24640. https://doi.org/10.1371/journal.pone.0024640.

Article  CAS  Google Scholar 

Kim K, Kim JH, Lee J, Jin HM, Kook H, Kim KK, Lee SY, Kim N. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood. 2007;109(8):3253–9. https://doi.org/10.1182/blood-2006-09-048249.

Article  CAS  Google Scholar 

Howell K, Posluszny J, He LK, Szilagyi A, Halerz J, Gamelli RL, Shankar R, Muthu K. High MafB expression following burn augments monocyte commitment and inhibits DC differentiation in hemopoietic progenitors. J Leukoc Biol. 2012;91(1):69–81. https://doi.org/10.1189/jlb.0711338.

留言 (0)

沒有登入
gif