Identification of perturbed pathways rendering susceptibility to tuberculosis in type 2 diabetes mellitus patients using BioNSi simulation of integrated networks of implicated human genes

Agarwal AK, Ginisha G, Preeti G, et al. 2016 The association between diabetes and tuberculosis may be the next challenge for global tuberculosis control worldwide. Indian J. Endocrinol. Metab. 20 732–733

Article  Google Scholar 

Andrade BB, Kumar NP, Sridhar R, et al. 2014 Heightened plasma levels of heme oxygenase-1 and tissue inhibitor of metalloproteinase-4 as well as elevated peripheral neutrophil counts are associated with TB-diabetes comorbidity. Chest 145 1244–1254

Article  CAS  Google Scholar 

Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. 2011 Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes. Mol. Cell. Biochem. 351 197–205

Article  CAS  Google Scholar 

Ban T, Sato GR and Tamura T 2018 Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus. Int. Immunol. 30 529–536

Article  CAS  Google Scholar 

Barrett T, Suzek TO, Troup DB, et al. 2005 NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res. 33 D562–D566

Article  CAS  Google Scholar 

Bouzeyen R, Haoues M, Barbouche M-R, et al. 2019 FOXO3 transcription factor regulates IL-10 expression in Mycobacteria-infected macrophages, tuning their polarization and the subsequent adaptive immune response. Front. Immunol. 10 2922

Article  CAS  Google Scholar 

Chaudhry LA, Essa EB, Al-Solaiman S, et al. 2012 Prevalence of diabetes type-2 and pulmonary tuberculosis among Filipino and treatment outcomes: a surveillance study in the Eastern Saudi Arabia. Int. J. Mycobacteriol. 1 106–109

Article  Google Scholar 

Cooper AM, Mayer-Barber KD and Sher A 2011 Role of innate cytokines in mycobacterial infection. Mucosal Immunol. 4 252–260

Article  CAS  Google Scholar 

Dennis G, Sherman BT, Hosack DA, et al. 2003 DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4 R60

Article  Google Scholar 

Dinarello CA 2000 Proinflammatory cytokines. Chest 118 503–508

Article  CAS  Google Scholar 

Du P, Kibbe WA and Lin SM 2008 lumi: a pipeline for processing Illumina microarray. Bioinformatics 24 1547–1548

Article  CAS  Google Scholar 

Dubey RK 2016 Assuming the role of mitochondria in mycobacterial infection. Int. J. Mycobacteriol. 5 379–383

Article  Google Scholar 

Faurholt-Jepsen D, Range N, PrayGod G, et al. 2011 Diabetes Is a risk factor for pulmonary tuberculosis: a case-control study from Mwanza, Tanzania. Plos One 6 e24215

Article  CAS  Google Scholar 

Gonzalez-Curiel I, Castañeda-Delgado J, Lopez-Lopez N, et al. 2011 Differential expression of antimicrobial peptides in active and latent tuberculosis and its relationship with diabetes mellitus. Hum. Immunol. 72 656–662

Article  CAS  Google Scholar 

Harries AD, Kumar AMV, Satyanarayana S, et al. 2016 Addressing diabetes mellitus as part of the strategy for ending TB. Transact. R. Soc. Trop. Med. Hygiene 110 173–179

Article  Google Scholar 

Harris J, De Haro SA, Master SS, et al. 2007 T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27 505–517

Article  CAS  Google Scholar 

Herrera MT, Gonzalez Y, Hernández-Sánchez F, et al. 2017 Low serum vitamin D levels in type 2 diabetes patients are associated with decreased mycobacterial activity. BMC Infect. Dis. 17 610

Article  Google Scholar 

Isserlin R, Merico D, Voisin V, et al. 2014 Enrichment map—a Cytoscape app to visualize and explore OMICs pathway enrichment results. F1000Research 3 141

Article  Google Scholar 

Jayachandran R, Sundaramurthy V, Combaluzier B, et al. 2007 Survival of Mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130 37–50

Article  CAS  Google Scholar 

Jeon CY and Murray MB 2008 Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 5 e152

Article  Google Scholar 

Kapur A and Harries AD 2013 The double burden of diabetes and tuberculosis – public health implications. Diab. Res. Clin. Pract. 101 10–19

Article  Google Scholar 

Karachunskiĭ MA, Gergert VI and Iakovleva OB 1997 Specific features of cellular immunity of pulmonary tuberculosis in patients with diabetes mellitus. Problemy Tuberkuleza 6 59–60

Google Scholar 

Keikha M, Shabani M, Navid S, et al. 2018 What is the role of “T reg Cells” in tuberculosis pathogenesis? Indian J. Tuberculosis 65 360–362

Article  Google Scholar 

Killick KE, Ní Cheallaigh C, O’Farrelly C, et al. 2013 Receptor-mediated recognition of mycobacterial pathogens. Cell. Microbiol. 15 1484–1495

Article  CAS  Google Scholar 

Kumar D, Nath L, Kamal MA, et al. 2010 Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140 731–743

Article  CAS  Google Scholar 

Kumar NP, Banurekha VV, Nair D, et al. 2015a Type 2 diabetes—tuberculosis co-morbidity is associated with diminished circulating levels of IL-20 subfamily of cytokines. Tuberculosis 95 707–712

Article  CAS  Google Scholar 

Kumar NP, Sridhar R, Banurekha VV, et al. 2013 Type 2 diabetes mellitus coincident with pulmonary tuberculosis is associated with heightened systemic type 1, type 17, and other proinflammatory cytokines. Ann. Am. Thoracic Soc. 10 441–449

Article  Google Scholar 

Kumar NP, Sridhar R, Nair D, et al. 2015b Type 2 diabetes mellitus is associated with altered CD8 (+) T and natural killer cell function in pulmonary tuberculosis. Immunology 144 677–686

Article  CAS  Google Scholar 

Latorre I, Leidinger P, Backes C, et al. 2015 A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis. Eur. Respir. J. 45 1173–1176

Article  CAS  Google Scholar 

Li Y, Li D, Zhang J, et al. 2016 Association between toll-like receptor 4 and occurrence of type 2 diabetes mellitus susceptible to pulmonary tuberculosis in Northeast China. Stem Cells Int. 2016 8160318

Article  Google Scholar 

Liu CH, Liu H and Ge B 2017 Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell. Mol. Immunol. 14 963–975

Article  CAS  Google Scholar 

Lopez-Lopez N, Martinez AGR, Garcia-Hernandez MH, et al. 2018 Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Memorias Do Instituto Oswaldo Cruz 113 e170326

Article  Google Scholar 

Mandić-Rajčević S and Colosio C 2019 Methods for the identification of outliers and their influence on exposure assessment in agricultural pesticide applicators: a proposed approach and validation using biological monitoring. Toxics 7 E37

Article  Google Scholar 

Martens GW, Arikan MC, Lee J, et al. 2007 Tuberculosis susceptibility of diabetic mice. Am. J. Respir. Cell Mol. Biol. 37 518–524

Article  CAS  Google Scholar 

Mizumura K, Maruoka S, Gon Y, et al. 2016 The role of necroptosis in pulmonary diseases. Respir. Investig. 54 407–412

Article  Google Scholar 

Monin L, Griffiths KL, Slight S, et al. 2015 Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol. 8 1099–1109

Article  CAS  Google Scholar 

Mustafa AS 2005 Recombinant and synthetic peptides to identify Mycobacterium tuberculosis antigens and epitopes of diagnostic and vaccine relevance. Tuberculosis 85 367–376

Article  CAS  Google Scholar 

Niazi AK and Kalra S 2012 Diabetes and tuberculosis: a review of the role of optimal glycemic control. J. Diab. Metab. Disord. 11 28

Article  Google Scholar 

O’Garra A, Redford PS, McNab FW, et al. 2013 The immune response in tuberculosis. Annu. Rev. Immunol. 31 475–527

Article  Google Scholar 

Pajuelo D, Gonzalez-Juarbe N and Niederweis M 2020 NAD hydrolysis by the tuberculosis necrotizing toxin induces lethal oxidative stress in macrophages. Cell. Microbiol. 22 e13115

Article  CAS  Google Scholar 

Parton A, McGilligan V, O’Kane M, et al. 2016 Computational modelling of atherosclerosis. Brief. Bioinform. 17 562–575

Article  CAS  Google Scholar 

Pathak A, Jainarayanan AK and Brahmachari S 2019 Invariant genes in human genomes. bioRxiv https://doi.org/10.1101/739706

Pavan Kumar N, Anuradha R, Andrade BB, et al. 2013 Circulating biomarkers of pulmonary and extrapulmonary tuberculosis in children. Clin. Vaccine Immunol. 20 704–711

Article  Google Scholar 

Povey S, Lovering R, Bruford E, et al. 2001 The HUGO Gene Nomenclature Committee (HGNC). Hum. Genet. 109 678–680

Article  CAS  Google Scholar 

Qu H-Q, Rentfro AR, Lu Y, et al. 2012 Host susceptibility to tuberculosis: insights from a longitudinal study of gene expression in diabetes. Int. J. Tuberc. Lung Dis. 16 370–372

Article  Google Scholar 

Rani J, Bhargav A, Datta M, et al. 2022 Identification of perturbed pathways rendering susceptibility to tuberculosis in type 2 diabetes mellitus patients using bionsi simulation of integrated network of implicated human genes. https://doi.org/10.21203/rs.3.rs-863821/v1

Rani J, Mittal I, Pramanik A, et al. 2017 T2DiACoD: a gene atlas of type 2 diabetes mellitus associated complex disorders. Sci. Rep. 7 6892

Article  Google Scholar 

Rani J, Shah ABR and Ramachandran S 2015 pubmed.mineR: an R package with text-mining algorithms to analyse PubMed abstracts. J. Biosci. 40 671–682

Article  Google Scholar 

Restrepo BI 2016 Diabetes and tuberculosis. Microbiol. Spectrum 4 4.6.48

Ritchie ME, Phipson B, Wu D, et al. 2015 Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43 e47

Article  Google Scholar 

留言 (0)

沒有登入
gif