Three-dimensional echocardiographic assessment of left ventricular geometric changes following acute myocardial infarction

Spinelli L, Morisco C, Assante di Panzillo E, Izzo R, Trimarco B (2013) Reverse left ventricular remodeling after acute myocardial infarction: the prognostic impact of left ventricular global torsion. Int J Cardiovasc Imaging 29(4):787–795. https://doi.org/10.1007/s10554-012-0159-5

Article  Google Scholar 

Sulo G, Igland J, Vollset SE, Nygård O, Ebbing M, Sulo E et al (2016) Heart failure complicating acute myocardial infarction; burden and timing of occurrence: a nation-wide analysis including 86,771 patients from the cardiovascular disease in Norway (CVDNOR) project. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002667

Article  Google Scholar 

Gerber Y, Weston SA, Enriquez-Sarano M, Berardi C, Chamberlain AM, Manemann SM et al (2016) Mortality associated with heart failure after myocardial infarction: a contemporary community perspective. Circ Heart Fail 9(1):e002460

Article  Google Scholar 

Zhao W, Zhao J, Rong J (2020) pharmacological modulation of cardiac remodeling after myocardial infarction. Oxid Med Cell Longev. https://doi.org/10.1155/2020/8815349

Article  Google Scholar 

Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM et al (2002) Left ventricular remodeling after primary coro- nary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106(18):2351–2357

Article  Google Scholar 

Dorosz JL, Lezotte DC, Weitzemkamp DA, Allen LASE (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systemic review and meta-analysis. J Am Coll Cardiol 15(59):1799–1808

Article  Google Scholar 

Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16(3):233–271

Article  Google Scholar 

Klaeboe LG, Edvardsen T (2019) Echocardiographic assessment of left ventricular systolic function. J Echocardiogr 17(1):10–16. https://doi.org/10.1007/s12574-018-0405-5

Article  Google Scholar 

Jung IH, Park JH, Lee JA, Kim GS, Lee HY, Byun YSKB (2020) Left ventricular global longitudinal strain as a predictor for left ventricular reverse remodeling in dilated cardiomyopathy. J Cardiovasc Imaging 28(2):137–149

Article  Google Scholar 

Huttin O, Coiro S, Selton-Suty C, Juillière Y, Donal E, Magne J et al (2016) Prediction of left ventricular remodeling after a myocardial infarction: role of myocardial deformation: a systematic review and meta-analysis. PLoS ONE 11(12):1–14

Article  Google Scholar 

Mor-Avi V, Sugeng LLR (2009) Real-time 3-dimensional echocardiography: an integral component of the routine echocardiographic examination in adult patients? Circulation 119(2):314–329

Article  Google Scholar 

Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al (2018) ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 40(2):87–165. https://doi.org/10.1093/eurheartj/ehy394

Article  Google Scholar 

Di Donato M, Dabic P, Castelvecchio S, Santambrogio C, Brankovic J, Collarini L et al (2006) Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and “new” conicity index comparisons. Eur J cardio-thoracic Surg Off J Eur Assoc Cardio-thoracic Surg 29(Suppl 1):S225–S230

Article  Google Scholar 

Kapetanakis S, Kearney MT, Siva A, Gall N, Cooklin M (2005) Real-time three-dimensional echocardiography a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 112(7):992–1000. https://doi.org/10.1161/CIRCULATIONAHA.104.474445

Article  Google Scholar 

Aimo A, Vergaro G, González A, Barison A, Lupón JDV et al (2022) Cardiac remodelling—part 2: clinical, imaging and laboratory findings. A review from the study group on biomarkers of the heart failure association of the European society of cardiology. Eur J Hear Fail 24(6):944–958

Article  Google Scholar 

Ola RK, Meena CB, Ramakrishnan S, Agarwal A, Bhargava S (2018) Detection of left ventricular remodeli; myocardial infarction after primary percutaneous c; two dimensional and three dimensional echocardiography. J Cardiovasc Echogr 30(1):39–44

Article  Google Scholar 

Aimo A, Fabiani I, Vergaro G, Arzilli C, Chubuchny V, Pasanisi EM et al (2021) Prognostic value of reverse remodeling criteria in heart failure with reduced or mid-range ejection fraction. ESC Hear Fail 8(4):3014–3025

Article  Google Scholar 

Sugano A, Seo Y, Yamamoto M, Harimura Y, Machino-Ohtsuka T, Ishizu T et al (2017) Optimal cut-off value of reverse remodeling to predict long-term outcome after cardiac resynchronization therapy in patients with ischemic cardiomyopathy. J Cardiol 69(2):456–461

Article  Google Scholar 

Bhatt AS, Ambrosy AP, Velazquez EJ (2017) Adverse remodeling and reverse remodeling after myocardial infarction. Curr Cardiol Rep 19(8):71

Article  Google Scholar 

Frigerio M, Roubina E (2005) Drugs for left ventricular remodeling in heart failure. Am J Cardiol 96(12A):10L-18L

Article  Google Scholar 

de Reis Filho JRAR, Cardoso JN, dos Cardoso CM (2015) Reverse cardiac remodeling: a marker of better prognosis in heart failure. Arq Bras Cardiol 104(6):502–506

Google Scholar 

Bodi V, Monmeneu JV, Ortiz-Perez JT, Lopez-Lereu MP, Bonanad C, Husser O et al (2015) Prediction of reverse remodeling at cardiac MR imaging soon after first ST-segment–elevation myocardial infarction: results of a large prospective registry. Radiology 278(1):54–63. https://doi.org/10.1148/radiol.2015142674

Article  Google Scholar 

Savarese G, Vedin O, D’Amario D, Uijl A, Dahlström U, Rosano G et al (2019) Prevalence and prognostic implications of longitudinal ejection fraction change in heart failure. JACC Hear Fail 7(4):306–317

Article  Google Scholar 

Aimo A, Vergaro G, Castiglione V, Barison A, Pasanisi E, Petersen C et al (2017) Effect of sex on reverse remodeling in chronic systolic heart failure. JACC Hear Fail 5(10):735–742

Article  Google Scholar 

Piro M, Della Bona R, Abbate A, Biasucci LMCF (2010) Sex-related differences in myocardial remodeling. J Am Coll Cardiol 16(55):1057–1065

Article  Google Scholar 

Mannaerts HFJ, Van Der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA (2004) Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J 25(8):680–687

Article  Google Scholar 

Mannaerts HFJ, Van Der Heide JA, Kamp O, Papavassiliu T, Marcus JT, Beek A et al (2003) Quantification of left ventricular volumes and ejection fraction using freehand transthoracic three-dimensional echocardiography: comparison with magnetic resonance imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 16(2):101–109

Article  Google Scholar 

van der Bijl P, Abou R, Goedemans L, Gersh BJ, Holmes DR, Ajmone Marsan N et al (2020) Left Ventricular post-infarct remodeling: implications for systolic function improvement and outcomes in the modern era. JACC Hear Fail 8(2):131–140

Article  Google Scholar 

Akashi N, Tsukui T, Yamamoto K, Seguchi M, Taniguchi Y, Sakakura K et al (2021) Comparison of clinical outcomes and left ventricular remodeling after ST-elevation myocardial infarction between patients with and without diabetes mellitus. Heart Vessels. https://doi.org/10.1007/s00380-021-01827-w

Article  Google Scholar 

Bulluck H, Carberry J, Carrick D, McEntegart M, Petrie MC, Eteiba H et al (2020) Redefining adverse and reverse left ventricular remodeling by cardiovascular magnetic resonance following ST-segment–elevation myocardial infarction and their implications on long-term prognosis. Circ Cardiovasc Imaging 13(7):e009937. https://doi.org/10.1161/CIRCIMAGING.119.009937

Article  Google Scholar 

Hassell ME, Vlastra W, Robbers L, Hirsch A, Nijveldt R, Tijssen JG et al (2017) Long-term left ventricular remodeling after revascularization for ST-segment elevation myocardial infarction as assessed by cardiac magnetic resonance imaging. Open Hear 7:e000569

Article  Google Scholar 

Amundsen BH, Crosby J, Steen PA, Torp H, Slørdahl SA, Støylen A (2009) Regional myocardial long-axis strain and strain rate measured by different tissue Doppler and speckle tracking echocardiography methods: a comparison with tagged magnetic resonance imaging. Eur J Echocardiogr J Work Gr Echocardiogr Eur Soc Cardiol 10(2):229–237

Google Scholar 

Bochenek T, Wita K, Tabor Z, Grabka M, Krzych Ł, Wróbel W et al (2011) Value of speckle-tracking echocardiography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction treated by primary percutaneous intervention. J Am Soc Echocardiogr 24(12):1342–1348

Article  Google Scholar 

Na HM, Cho GY, Lee JM, Cha MJ, Yoon YE, Lee SP et al (2016) Echocardiographic predictors for left ventricular remodeling after acute ST elevation myocardial infarction with low risk group: speckle tracking analysis. J Cardiovasc Ultrasound 24(2):128–134

Article  Google Scholar 

Joyce E, Hoogslag GE, Leong DP, Debonnaire P, Katsanos S, Boden H et al (2014) Association between left ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 7(1):74–81

Article  Google Scholar 

留言 (0)

沒有登入
gif