Diffusion-weighted MRI with deep learning for visualizing treatment results of MR-guided HIFU ablation of uterine fibroids

Verpalen IM, Anneveldt KJ, Nijholt IM et al (2019) Magnetic resonance-high intensity focused ultrasound (MR-HIFU) therapy of symptomatic uterine fibroids with unrestrictive treatment protocols: a systematic review and meta-analysis. Eur J Radiol 120:108700

Article  Google Scholar 

Fennessy FM, Tempany CM, McDannold NJ et al (2007) Uterine leiomyomas: MR imaging-guided focused ultrasound surgery - results of different treatment protocols. Radiology 243:885–893

Article  Google Scholar 

Park MJ, Kim YS, Rhim H, Lim HK (2014) Safety and therapeutic efficacy of complete or near-complete ablation of symptomatic uterine fibroid tumors by MR imaging-guided high-intensity focused US Therapy. J Vasc Interv Radiol 25:231–239

Article  Google Scholar 

Al Hilli MM, Stewart EA (2010) Magnetic resonance-guided focused ultrasound surgery. Semin Reprod Med 28:242–249

Article  Google Scholar 

Stewart EA, Gostout B, Rabinovici J, Kim HS, Regan L, Tempany CMC (2007) Sustained relief of leiomyoma symptoms by using focused ultrasound surgery. Obstet Gynecol 110:279–287

Article  Google Scholar 

Verpalen IM, de Boer JP, Linstra M et al (2020) The Focused Ultrasound Myoma Outcome Study (FUMOS); a retrospective cohort study on long-term outcomes of MR-HIFU therapy. Eur Radiol 30:2473–2482

Article  Google Scholar 

Keserci B, Duc NM (2017) The role of T1 perfusion-based classification in magnetic resonance-guided high-intensity focused ultrasound ablation of uterine fibroids. Eur Radiol 27:5299–5308

Article  Google Scholar 

Hijnen NM, Elevelt A, Pikkemaat J, Bos C, Bartels LW, Grüll H (2013) The magnetic susceptibility effect of gadolinium-based contrast agents on PRFS-based MR thermometry during thermal interventions. J Ther Ultrasound 1:8

Article  Google Scholar 

Hijnen NM, Elevelt A, Grüll H (2013) Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy. Invest Radiol 48:517–524

Article  CAS  Google Scholar 

Hectors SJCG, Jacobs I, Heijman E et al (2015) Multiparametric MRI analysis for the evaluation of MR-guided high intensity focused ultrasound tumor treatment. NMR Biomed 28:1125–1140

Article  Google Scholar 

Zimmerman BE, Johnson S, Odeen H et al (2021) Learning multiparametric biomarkers for assessing MR-guided focused ultrasound treatment of malignant tumors. IEEE Trans Biomed Eng 68:1737–1747

Article  Google Scholar 

Morochnik S, Ozhinsky E, Rieke V, Bucknor MD (2019) T2 mapping as a predictor of nonperfused volume in MRgFUS treatment of desmoid tumors. Int J Hyperthermia 36:1272–1277

Jacobs MA, Herskovits EH, Kim HS (2005) Uterine fibroids: diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery - preliminary study. Radiology 236:196–203

Article  Google Scholar 

Giles SL, Winfield JM, Collins DJ et al (2018) Value of diffusion-weighted imaging for monitoring tissue change during magnetic resonance-guided high-intensity focused ultrasound therapy in bone applications: an ex-vivo study. Eur Radiol Exp 2:10

Article  Google Scholar 

Chetan MR, Lyon PC, Wu F et al (2019) Role of diffusion-weighted imaging in monitoring treatment response following high-intensity focused ultrasound ablation of recurrent sacral chordoma. Radiol Case Rep 14:1197–1201

Walker MR, Zhong J, Waspe AC et al (2019) Acute MR-guided high-intensity focused ultrasound lesion assessment using diffusion-weighted imaging and histological analysis. Front Neurol 10:1069

Article  Google Scholar 

Jacobs MA, Ouwerkerk R, Kamel I, Bottomley PA, Bluemke DA, Kim HS (2009) Proton, diffusion-weighted imaging, and sodium (23Na) MRI of uterine leiomyomata after MR-guided high intensity focused ultrasound: a preliminary study. J Magn Reson Imaging 29:649

Article  Google Scholar 

Jacobs MA, Gultekin DH, Kim HS (2010) Comparison between diffusion-weighted imaging, -weighted, and postcontrast -weighted imaging after MR-guided, high intensity, focused ultrasound treatment of uterine leiomyomata: preliminary results. Med Phys 37:4768–4776

Article  Google Scholar 

Pilatou MC, Stewart EA, Maier SE et al (2009) MRI-based thermal dosimetry and diffusion-weighted imaging of MRI-guided focused ultrasound thermal ablation of uterine fibroids. J Magn Reson Imaging 29:404

Article  Google Scholar 

Verpalen I, Boomsma M, Edens M, Heijman E (2019) The evaluation of the non-perfused volume after MR-HIFU treatment of uterine fibroids using quantitative T2-mapping and diffusion weighted imaging. In: 19th International Symposium of ISTU and 5th European Symposium of EUFUS. Barcelona, p 143

Google Scholar 

Ikink ME, Voogt MJ, Van Den Bosch MAAJ et al (2014) Diffusion-weighted magnetic resonance imaging using different b-value combinations for the evaluation of treatment results after volumetric MR-guided high-intensity focused ultrasound ablation of uterine fibroids. Eur Radiol 24:2118–2127

Article  Google Scholar 

Ikink ME, Van Breugel JMM, Nijenhuis RJ, et al (2014) Intravoxel incoherent motion MRI for the characterization of uterine fibroids before MR-guided high-intensity focused ultrasound ablation. In: Proceedings of the Joint Annual Meeting International Society for Magnetic Resonance In Medicine - European Society for Magnetic Resonance in Medicine and Biology. Milan, p 3693

Verpalen IM (2021) Diffusion-weighted imaging to monitor treatment progression of magnetic resonance guided focused ultrasound fibroid ablation. In: Improving treatment efficacy of MR-HIFU fibroid ablation, Thesis. pp 131–148

Iima M, Le Bihan D (2016) Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 278:13–32

Article  Google Scholar 

Le Bihan D, Turner R (1992) The capillary network: a link between ivim and classical perfusion. Magn Reson Med 27:171–178

Article  Google Scholar 

Dijkstra H, Oudkerk M, Kappert P, Sijens PE (2017) Assessment of the link between quantitative biexponential diffusion-weighted imaging and contrast-enhanced MRI in the liver. Magn Reson Imaging 38:47–53

Article  Google Scholar 

Le Bihan D (2019) What can we see with IVIM MRI? Neuroimage 187:56–67

Article  Google Scholar 

Guo Z, Zhang Q, Li X, Jing Z (2015) Intravoxel incoherent motion diffusion weighted MR imaging for monitoring the instantly therapeutic efficacy of radiofrequency ablation in rabbit VX2 tumors without evident links between conventional perfusion weighted images. PLoS One. https://doi.org/10.1371/journal.pone.0127964

Verpalen IM, Anneveldt KJ, Vos PC et al (2020) Use of multiparametric MRI to characterize uterine fibroid tissue types. MAGMA. https://doi.org/10.1007/s10334-020-00841-9

Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205

Article  Google Scholar 

Gong E, Pauly JM, Wintermark M, Zaharchuk G (2018) Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 48:330–340

Article  Google Scholar 

Sun H, Liu X, Feng X, et al (2020) Substituting gadolinium in brain MRI using DeepContrast. Proc - Int Symp Biomed Imaging 2020-April:908–912

Zhao J, Li D, Kassam Z et al (2020) Tripartite-GAN: synthesizing liver contrast-enhanced MRI to improve tumor detection. Med Image Anal 63:101667

Article  Google Scholar 

Kleesiek J, Morshuis JN, Isensee F et al (2019) Can virtual contrast enhancement in brain MRI replace gadolinium? Invest Radiol 54:653–660

Article  CAS  Google Scholar 

Riexinger A, Martin J, Wetscherek A et al (2021) An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver. Magn Reson Med 85:2095–2108

Article  CAS  Google Scholar 

Wang L, Chen W, Yang W, Bi F, Yu FR (2020) A state-of-the-art review on image synthesis with generative adversarial networks. IEEE Access 8:63514–63537

Article  Google Scholar 

Mongan J, Moy L, Kahn CE (2020) Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2:e200029

Article  Google Scholar 

Keenan KE, Peskin AP, Wilmes LJ et al (2016) Variability and bias assessment in breast ADC measurement across multiple systems. J Magn Reson Imaging 44:846–855

Article  Google Scholar 

Jafar MM (2016) Diffusion-weighted magnetic resonance imaging in cancer: reported apparent diffusion coefficients, in-vitro and in-vivo reproducibility. World J Radiol 8:21

Article  Google Scholar 

留言 (0)

沒有登入
gif