A machine learning approach for predicting perihematomal edema expansion in patients with intracerebral hemorrhage

Virani SS, Alonso A, Benjamin EJ et al (2020) Heart Disease and Stroke Statistics-2020 update: a report from the American Heart Association. Circulation 141:e139–e596

Article  Google Scholar 

Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE (2011) Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology 76:1238–1244

Article  Google Scholar 

Xie H, Ma S, Wang X, Zhang X (2020) Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol 30:87–98

Article  Google Scholar 

Zhong JW, Jin YJ, Song ZJ et al (2021) Deep learning for automatically predicting early haematoma expansion in Chinese patients. Stroke Vasc Neurol 6:610–614

Article  Google Scholar 

Teng L, Ren Q, Zhang P, Wu Z, Guo W, Ren T (2021) Artificial intelligence can effectively predict early hematoma expansion of intracerebral hemorrhage analyzing noncontrast computed tomography image. Front Aging Neurosci 13:632138

Article  Google Scholar 

Peng WJ, Li Q, Tang JH et al (2019) The risk factors and prognosis of delayed perihematomal edema in patients with spontaneous intracerebral hemorrhage. CNS Neurosci Ther 25:1189–1194

Article  Google Scholar 

Loan JJ, Gane AB, Middleton L et al (2020) Association of baseline hematoma and edema volumes with one-year outcome and long-term survival after spontaneous intracerebral hemorrhage: a community-based inception cohort study. Int J Stroke 16:1747493020974282

Google Scholar 

Murthy SB, Urday S, Beslow LA et al (2016) Rate of perihaematomal oedema expansion is associated with poor clinical outcomes in intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 87:1169–1173

Article  Google Scholar 

Staykov D, Wagner I, Volbers B et al (2011) Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke 42:2625–2629

Article  Google Scholar 

Venkatasubramanian C, Mlynash M, Finley-Caulfield A et al (2011) Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke 42:73–80

Article  Google Scholar 

Simard JM, Kahle KT, Gerzanich V (2010) Molecular mechanisms of microvascular failure in central nervous system injury--synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg 113:622–629

Article  Google Scholar 

Ziai WC (2013) Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke 44:S74–S78

Article  Google Scholar 

Bodmer D, Vaughan KA, Zacharia BE, Hickman ZL, Connolly ES (2012) The molecular mechanisms that promote edema after intracerebral hemorrhage. Transl Stroke Res 3:52–61

Article  Google Scholar 

Sprugel MI, Kuramatsu JB, Volbers B et al (2019) Perihemorrhagic edema: revisiting hematoma volume, location, and surface. Neurology 93:e1159–e1170

Article  Google Scholar 

Wu TY, Sharma G, Strbian D et al (2017) Natural History of Perihematomal Edema and Impact on Outcome After Intracerebral Hemorrhage. Stroke 48:873–879

Article  Google Scholar 

Li YL, Lv XN, Wei X et al (2021) Relationship between non-contrast computed tomography imaging markers and perihemorrhagic edema growth in intracerebral hemorrhage. Neurocrit Care 35:451–456

Article  Google Scholar 

Boulouis G, Morotti A, Charidimou A, Dowlatshahi D, Goldstein JN (2017) Noncontrast computed tomography markers of intracerebral hemorrhage expansion. Stroke 48:1120–1125

Article  Google Scholar 

Ye G, Huang S, Chen R et al (2021) Early predictors of the increase in perihematomal edema volume after intracerebral hemorrhage: a retrospective analysis from the Risa-MIS-ICH Study. Front Neurol 12:700166

Article  Google Scholar 

Chen Y, Qin C, Chang J et al (2022) Defining delayed perihematomal edema expansion in intracerebral hemorrhage: segmentation, time course, risk factors and clinical outcome. Front Immunol 13:911207

Article  Google Scholar 

Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

Article  Google Scholar 

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22:276–282

Article  Google Scholar 

Barras CD, Tress BM, Christensen S et al (2009) Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke 40:1325–1331

Article  Google Scholar 

Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. https://arxiv.org/abs/1810.11363. Accessed 18 Feb 2021

Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

Article  Google Scholar 

van Griethuysen J, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107

Article  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine Learning in Python. JMLR 12:2825–2830

Google Scholar 

Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

Article  Google Scholar 

Arik SO, Pfister T (2019) TabNet: attentive interpretable tabular learning. https://arxiv.org/abs/1908.07442. Accessed 12 Oct 2021

Berrar D (2019) Performance measures for binary classification. Encycl Bioinforma Comput Biol 1:546–560

Google Scholar 

DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

Article  Google Scholar 

Enders FB (2013) Collinearity. Encyclopedia Britannica. https://www.britannica.com/topic/collinearity-statistics. Accessed 11 May 2019

Morotti A, Boulouis G, Dowlatshahi D et al (2019) Standards for detecting, interpreting, and reporting noncontrast computed tomographic markers of intracerebral hemorrhage expansion. Ann Neurol 86:480–492

Article  Google Scholar 

Rodriguez-Luna D, Stewart T, Dowlatshahi D et al (2016) Perihematomal edema is greater in the presence of a spot sign but does not predict intracerebral hematoma expansion. Stroke 47:350–355

Article  Google Scholar 

Lambin P, Leijenaar R, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

Article  Google Scholar 

Parry-Jones AR, Wang X, Sato S et al (2015) Edema extension distance: outcome measure for phase II clinical trials targeting edema after intracerebral hemorrhage. Stroke 46:e137–e140

Article  Google Scholar 

Yang Z, Liu B, Zhong L et al (2015) Toll-like receptor-4-mediated autophagy contributes to microglial activation and inflammatory injury in mouse models of intracerebral haemorrhage. Neuropathol Appl Neurobiol 41:e95–e106

Article  Google Scholar 

Nguyen HX, O'Barr TJ, Anderson AJ (2007) Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem 102:900–912

Article  Google Scholar 

Qing WG, Dong YQ, Ping TQ et al (2009) Brain edema after intracerebral hemorrhage in rats: the role of iron overload and aquaporin 4. J Neurosurg 110:462–468

Article  Google Scholar 

留言 (0)

沒有登入
gif