Non-invasive evaluation of the pathological and functional characteristics of chronic kidney disease by diffusion kurtosis imaging and intravoxel incoherent motion imaging: comparison with conventional DWI

1. Ammirati AL. Chronic kidney disease. Rev Assoc Med Bras 1992; 66: s03–9. doi: https://doi.org/10.1590/1806-9282.66.S1.3

2. Webster AC, , Nagler EV, , Morton RL, , Masson P. Chronic kidney disease. Lancet 2017; 389: 1238–52. doi: https://doi.org/10.1016/S0140-6736(16)32064-5

3. End chronic kidney disease neglect. Nature 2020; 579: 173. doi: https://doi.org/10.1038/d41586-020-00691-4

4. Ritz E. Clinical manifestations and natural history of diabetic kidney disease. Med Clin North Am 2013; 97: 19–29. doi: https://doi.org/10.1016/j.mcna.2012.10.008

5. Bidin MZ, , Shah AM, , Stanslas J, , Seong CLT. Blood and urine biomarkers in chronic kidney disease: an update. Clin Chim Acta 2019; 495: 239–50. doi: https://doi.org/10.1016/j.cca.2019.04.069

6. Al-Awwa IA, , Hariharan S, , First MR. Importance of allograft biopsy in renal transplant recipients: correlation between clinical and histological diagnosis. Am J Kidney Dis 1998; 31: S15–8. doi: https://doi.org/10.1053/ajkd.1998.v31.pm9631859

7. Whittier WL, , Korbet SM. Timing of complications in percutaneous renal biopsy. J Am Soc Nephrol 2004; 15: 142–47. doi: https://doi.org/10.1097/01.asn.0000102472.37947.14

8. Leung G, , Kirpalani A, , Szeto SG, , Deeb M, , Foltz W, , Simmons CA, , et al.. Could MRI be used to image kidney fibrosis? A review of recent advances and remaining barriers. Clin J Am Soc Nephrol 2017; 12: 1019–28. doi: https://doi.org/10.2215/CJN.07900716

9. Petralia G, , Padhani AR, , Pricolo P, , Zugni F, , Martinetti M, , Summers PE, , et al.. Whole-Body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. Radiol Med 2019; 124: 218–33. doi: https://doi.org/10.1007/s11547-018-0955-7

10. Khoo MMY, , Tyler PA, , Saifuddin A, , Padhani AR. Diffusion-Weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 2011; 40: 665–81. doi: https://doi.org/10.1007/s00256-011-1106-6

11. Thoeny HC, , De Keyzer F. Diffusion-Weighted MR imaging of native and transplanted kidneys. Radiology 2011; 259: 25–38. doi: https://doi.org/10.1148/radiol.10092419

12. Song C, , Cheng P, , Cheng J, , Zhang Y, , Sun M, , Xie S, , et al.. Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI. Eur Radiol 2020; 30: 110–18. doi: https://doi.org/10.1007/s00330-019-06343-0

13. Tufton N, , White G, , Drake WM, , Sahdev A, , Akker SA. Diffusion-Weighted imaging (DWI) highlights SDHB-related tumours: a pilot study. Clin Endocrinol (Oxf) 2019; 91: 104–9. doi: https://doi.org/10.1111/cen.13980

14. Hueper K, , Khalifa AA, , Bräsen JH, , Vo Chieu VD, , Gutberlet M, , Wintterle S, , et al.. Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 2016; 44: 112–21. doi: https://doi.org/10.1002/jmri.25158

15. Zhang JL, , Sigmund EE, , Chandarana H, , Rusinek H, , Chen Q, , Vivier P-H, , et al.. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 2010; 254: 783–92. doi: https://doi.org/10.1148/radiol.09090891

16. Jensen JH, , Helpern JA, , Ramani A, , Lu H, , Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432–40. doi: https://doi.org/10.1002/mrm.20508

17. Tamada T, , Prabhu V, , Li J, , Babb JS, , Taneja SS, , Rosenkrantz AB. Prostate cancer: diffusion-weighted MR imaging for detection and assessment of aggressiveness-comparison between conventional and kurtosis models. Radiology 2017; 284: 100–108. doi: https://doi.org/10.1148/radiol.2017162321

18. Iima M. Perfusion-driven intravoxel incoherent motion (IVIM) MRI in oncology: applications, challenges, and future trends. Magn Reson Med Sci 2021; 20: 125–38. doi: https://doi.org/10.2463/mrms.rev.2019-0124

19. Kasa LW, , Haast RAM, , Kuehn TK, , Mushtaha FN, , Baron CA, , Peters T, , et al.. Evaluating high spatial resolution diffusion kurtosis imaging at 3T: reproducibility and quality of fit. J Magn Reson Imaging 2021; 53: 1175–87. doi: https://doi.org/10.1002/jmri.27408

20. Levey AS, , Stevens LA, , Schmid CH, , Zhang YL, , Castro AF 3rd, , Feldman HI, , et al.. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–12. doi: https://doi.org/10.7326/0003-4819-150-9-200905050-00006

21. Katafuchi R, , Kiyoshi Y, , Oh Y, , Uesugi N, , Ikeda K, , Yanase T, , et al.. Glomerular score as a prognosticator in IgA nephropathy: its usefulness and limitation. Clin Nephrol 1998; 49: 1–8.

22. Liu Z, , Xu Y, , Zhang J, , Zhen J, , Wang R, , Cai S, , et al.. Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T Mr. Eur Radiol 2015; 25: 652–60. doi: https://doi.org/10.1007/s00330-014-3461-x

23. Mao W, , Ding Y, , Ding X, , Wang Y, , Fu C, , Zeng M, , et al.. Pathological assessment of chronic kidney disease with DWI: is there an added value for diffusion kurtosis imaging? J Magn Reson Imaging 2021; 54: 508–17. doi: https://doi.org/10.1002/jmri.27569

24. Wetzels JFM, , Kiemeney LALM, , Swinkels DW, , Willems HL, , den Heijer M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen biomedical study. Kidney Int 2007; 72: 632–37. doi: https://doi.org/10.1038/sj.ki.5002374

25. Zhang JL, , Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2020; 52: 369–79. doi: https://doi.org/10.1002/jmri.26911

26. Hashim E, , Yuen DA, , Kirpalani A. Reduced flow in delayed graft function as assessed by IVIM is associated with time to recovery following kidney transplantation. J Magn Reson Imaging 2021; 53: 108–17. doi: https://doi.org/10.1002/jmri.27245

27. Evans RG, , Eppel GA, , Anderson WP, , Denton KM. Mechanisms underlying the differential control of blood flow in the renal medulla and cortex. J Hypertens 2004; 22: 1439–51. doi: https://doi.org/10.1097/01.hjh.0000133744.85490.9d

28. Ding J, , Xing W, , Wu D, , Chen J, , Pan L, , Sun J, , et al.. Evaluation of renal oxygenation level changes after water loading using susceptibility-weighted imaging and T2* mapping. Korean J Radiol 2015; 16: 827–34. doi: https://doi.org/10.3348/kjr.2015.16.4.827

29. Deux J-F, , Audard V, , Brugières P, , Habibi A, , Manea E-M, , Guillaud-Danis C, , et al.. Magnetic resonance imaging assessment of kidney oxygenation and perfusion during sickle cell vaso-occlusive crises. Am J Kidney Dis 2017; 69: 51–59. doi: https://doi.org/10.1053/j.ajkd.2016.07.027

30. Cheng Z-Y, , Feng Y-Z, , Hu J-J, , Lin Q-T, , Li W, , Qian L, , et al.. Intravoxel incoherent motion imaging of the kidney: the application in patients with hyperuricemia. J Magn Reson Imaging 2020; 51: 833–40. doi: https://doi.org/10.1002/jmri.26861

31. Mao W, , Zhou J, , Zeng M, , Ding Y, , Qu L, , Chen C, , et al.. Chronic kidney disease: pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging. J Magn Reson Imaging 2018; 47: 1251–59. doi: https://doi.org/10.1002/jmri.25861

32. Deng Y, , Yang B, , Peng Y, , Liu Z, , Luo J, , Du G. Use of intravoxel incoherent motion diffusion-weighted imaging to detect early changes in diabetic kidneys. Abdom Radiol (NY) 2018; 43: 2728–33. doi: https://doi.org/10.1007/s00261-018-1521-4

33. Feng Y-Z, , Chen X-Q, , Yu J, , Liu X-L, , Cheng Z-Y, , Ren W-W, , et al.. Intravoxel incoherent motion (IVIM) at 3.0 T: evaluation of early renal function changes in type 2 diabetic patients. Abdom Radiol (NY) 2018; 43: 2764–73. doi: https://doi.org/10.1007/s00261-018-1555-7

34. Huang Y, , Chen X, , Zhang Z, , Yan L, , Pan D, , Liang C, , et al.. Mri quantification of non-Gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study. NMR Biomed 2015; 28: 154–61. doi: https://doi.org/10.1002/nbm.3235

35. Zhou H, , Zhang J, , Zhang XM, , Chen T, , Hu J, , Jing Z, , et al.. Noninvasive evaluation of early diabetic nephropathy using diffusion kurtosis imaging: an experimental study. Eur Radiol 2021; 31: 2281–88. doi: https://doi.org/10.1007/s00330-020-07322-6

36. Peng X-G, , Bai Y-Y, , Fang F, , Wang X-Y, , Mao H, , Teng G-J, , et al.. Renal lipids and oxygenation in diabetic mice: noninvasive quantification with MR imaging. Radiology 2013; 269: 748–57. doi: https://doi.org/10.1148/radiol.13122860

留言 (0)

沒有登入
gif