Ischemic preconditioning and exercise performance: are the psychophysiological responses underestimated?

Abbiss CR, Peiffer JJ, Meeusen R, Skorski S (2015) Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med 45:1235–1243. https://doi.org/10.1007/s40279-015-0344-5

Article  Google Scholar 

Abrahams VC (1986) Group III and IV receptors of skeletal muscle. Can J Physiol Pharmacol 64:509–514. https://doi.org/10.1139/y86-083

Article  CAS  Google Scholar 

Amann M, Sidhu SK, Weavil JC et al (2015) Autonomic responses to exercise: Group III/IV muscle afferents and fatigue. Autono Neurosci Basic Clin 188:19–23. https://doi.org/10.1016/j.autneu.2014.10.018

Article  Google Scholar 

Amann M (2012) Significance of group III and IV muscle afferents for the endurance exercising human. 1–7

Angius L, Crisafulli A, Hureau TJ et al (2017) Commentaries on Viewpoint: could small-diameter muscle afferents be responsible for the ergogenic effect of limb ischemic preconditioning? J Appl Physiol 122:721–725. https://doi.org/10.1152/japplphysiol.00030.2017

Article  Google Scholar 

Angius L, Pageaux B, Crisafulli A et al (2022) Ischemic preconditioning of the muscle reduces the metaboreflex response of the knee extensors. Eur J Appl Physiol 122:141–155. https://doi.org/10.1007/s00421-021-04815-0

Article  Google Scholar 

Arriel RA, de Souza HLR, da Mota GR, Marocolo M (2018) Declines in exercise performance are prevented 24 hours after post-exercise ischemic conditioning in amateur cyclists. PLoS ONE 13:e0207053. https://doi.org/10.1371/journal.pone.0207053

Article  CAS  Google Scholar 

Arriel RA, Rodrigues JF, de Souza HLR et al (2020b) Ischemia-reperfusion intervention: from enhancements in exercise performance to accelerated performance recovery—a systematic review and meta-analysis. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17218161

Article  Google Scholar 

Arriel RA, Meireles A, Hohl R, Marocolo M (2020a) Ischemic preconditioning improves performance and accelerates the heart rate recovery. J Sports Med Phys Fitness. https://doi.org/10.23736/S0022-4707.20.10822-3

Bailey TG, Jones H, Gregson W et al (2012) Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc 44:2084–2089. https://doi.org/10.1249/MSS.0b013e318262cb17

Article  CAS  Google Scholar 

Barcroft H, Lind AR, Petrofsky JS (1978) The lack of influence of reactive hyperemia on exhausting rhythmic or static exercise. Eur J Appl Physiol Occup Physiol 38:49–54. https://doi.org/10.1007/BF00436752

Article  CAS  Google Scholar 

Baron B, Moullan F, Deruelle F, Noakes TD (2011) The role of emotions on pacing strategies and performance in middle and long duration sport events. Br J Sports Med 45:511–517. https://doi.org/10.1136/bjsm.2009.059964

Article  CAS  Google Scholar 

Basset FA, Kelly LP, Hohl R, Kaushal N (2022) Type of self-talk matters: Its effects on perceived exertion, cardiorespiratory, and cortisol responses during an iso-metabolic endurance exercise. Psychophysiology 59:e13980. https://doi.org/10.1111/psyp.13980

Article  Google Scholar 

Behrens M, Gube M, Chaabene H et al (2022) Fatigue and human performance: an updated framework. Sports Med. https://doi.org/10.1007/s40279-022-01748-2

Article  Google Scholar 

Biddle S, Wang CKJ, Kavussanu M, Spray C (2003) Correlates of achievement goal orientations in physical activity: a systematic review of research. Eur J Sport Sci 3:1–20. https://doi.org/10.1080/17461390300073504

Article  Google Scholar 

Boysen NC, Dragon DN, Talman WT (2009) Parasympathetic tonic dilatory influences on cerebral vessels. Auton Neurosci 147:101–104. https://doi.org/10.1016/j.autneu.2009.01.009

Article  Google Scholar 

Campos JL, Butler JS, Bülthoff HH (2012) Multisensory integration in the estimation of walked distances. Exp Brain Res 218:551–565. https://doi.org/10.1007/s00221-012-3048-1

Article  Google Scholar 

Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583. https://doi.org/10.1093/brain/awl004

Article  Google Scholar 

Cocking S, Wilson MG, Nichols D et al (2017) Is there an optimal ischaemic preconditioning dose to improve cycling performance? Int J Sports Physiol Perform. https://doi.org/10.1123/ijspp.2017-0114

Article  Google Scholar 

Cocking S, Cable NT, Wilson MG et al (2018) Conduit artery diameter during exercise is enhanced after local, but not remote, Ischemic Preconditioning. Front Physiol 9:435. https://doi.org/10.3389/fphys.2018.00435

Article  Google Scholar 

Collier EA, Percival CJ (1959) The working capacity of muscle during reactive hyperemia. Ergonomics 2:1

Google Scholar 

Costa KG, Cabral DA, Hohl R, Fontes EB (2019) Rewiring the addicted brain through a psychobiological model of physical exercise. Front Psych. https://doi.org/10.3389/fpsyt.2019.00600

Article  Google Scholar 

Cromwell HC, Panksepp J (2011) Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term “cognition” and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci Biobehav Rev 35:2026–2035. https://doi.org/10.1016/j.neubiorev.2011.02.008

Article  Google Scholar 

Cui J, Leuenberger UA, Gao Z, Sinoway LI (2011) Sympathetic and cardiovascular responses to venous distension in an occluded limb. Am J Physiol Regul Integr Comp Physiol 301:R1831-1837. https://doi.org/10.1152/ajpregu.00170.2011

Article  CAS  Google Scholar 

Cunniffe B, Sharma V, Cardinale M, Yellon D (2017) Characterization of muscle oxygenation response to vascular occlusion: implications for remote ischaemic preconditioning and physical performance. Clin Physiol Funct Imaging 37:785–793. https://doi.org/10.1111/cpf.12353

Article  CAS  Google Scholar 

Damasio A, Carvalho GB (2013) The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci 14:143–152. https://doi.org/10.1038/nrn3403

Article  CAS  Google Scholar 

Davis HL, Alabed S, Chico TJA (2020) Effect of sports massage on performance and recovery: a systematic review and meta-analysis. BMJ Open Sport Exerc Med 6:e000614. https://doi.org/10.1136/bmjsem-2019-000614

Article  Google Scholar 

De Oliveira Cruz RS, De Aguiar RA, Turnes T et al (2016) Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab 41:825–831. https://doi.org/10.1139/apnm-2015-0646

Article  CAS  Google Scholar 

De Oliveira Cruz RS, Pereira KL, Lisbôa FD, Caputo F (2017) Could small-diameter muscle afferents be responsible for the ergogenic effect of limb ischemic preconditioning? J Appl Physiol 122:718–720. https://doi.org/10.1152/japplphysiol.00662.2016

Article  CAS  Google Scholar 

de Souza HLR, Arriel RA, Hohl R et al (2019) Is ischemic preconditioning intervention occlusion-dependent to enhance resistance exercise performance? J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000003224

Article  Google Scholar 

de Souza HLR, Arriel RA, Mota GR et al (2021) Does ischemic preconditioning really improve performance or it is just a placebo effect? PLoS ONE 16:e0250572. https://doi.org/10.1371/journal.pone.0250572

Article  CAS  Google Scholar 

Ekkekakis P (2013) The measurement of affect, mood, and emotion: a guide for health-behavioral research, 1st edn. Cambridge University Press, New York

Book  Google Scholar 

Ellingson JM, Verges A, Littlefield AK et al (2013) Are bottom-up and top-down traits in dual-systems models of risky behavior genetically distinct? Behav Genet 43:480–490. https://doi.org/10.1007/s10519-013-9615-9

Article  Google Scholar 

Enko K, Nakamura K, Yunoki K et al (2011) Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci 61:507–513. https://doi.org/10.1007/s12576-011-0172-9

Article  Google Scholar 

Ferreira TN, Sabino-Carvalho JLC, Lopes TR et al (2016) Ischemic preconditioning and repeated sprint swimming: a placebo and nocebo study. Med Sci Sports Exerc 48:1967–1975. https://doi.org/10.1249/MSS.0000000000000977

Article  Google Scholar 

Friedman HS (ed) (2015) Encyclopedia of Mental Health, 2° edição. Academic Press

Gomez-Cabrera M-C, Domenech E, Viña J (2008) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44:126–131. https://doi.org/10.1016/j.freeradbiomed.2007.02.001

Article  CAS  Google Scholar 

Green DJ, Dawson EA, Groenewoud HMM et al (2014) Is flow-mediated dilation nitric oxide mediated? A meta-analysis. Hypertension 63:376–382. https://doi.org/10.1161/HYPERTENSIONAHA.113.02044

Article  CAS  Google Scholar 

Griffin PJ, Hughes L, Gissane C, Patterson SD (2018) Effects of local versus remote ischemic preconditioning on repeated sprint running performance. J Sports Med Phys Fitness. https://doi.org/10.23736/S0022-4707.18.08400-1

Hagger MS, Protogerou C (2018) Affect in the context of self-determination theory. In: affective determinants of health behavior. Oxford University Press, New York

Hohl R, Deslandes AC, Mármora CHC (2019) The effect of single-dose massage session on autonomic activity, mood, and affective responses in major depressive disorder. J Holist Nurs. https://doi.org/10.1177/0898010119832493

Article  Google Scholar 

Hummel SG, Fischer AJ, Martin SM et al (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40:501–506. https://doi.org/10.1016/j.freeradbiomed.2005.08.047

Article  CAS  Google Scholar 

Iggo A (1961) Non-myelinated afferent fibers from mammalian skeletal muscle. J Physiol (lond) 155:52p–53p

Google Scholar 

Incognito AV, Burr JF, Millar PJ (2016) The effects of ischemic preconditioning on human exercise performance. Sports Medicine (auckland, NZ) 46:531–544. https://doi.org/10.1007/s40279-015-0433-5

Article  Google Scholar 

Incognito AV, Doherty CJ, Lee JB et al (2017) Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men. Physiol Rep 5:13342. https://doi.org/10.14814/phy2.13342

Article  Google Scholar 

Ishii H, Niioka T, Sudo E, Izumi H (2005) Evidence for parasympathetic vasodilator fibres in the rat masseter muscle. J Physiol 569:617–629. https://doi.org/10.1113/jphysiol.2005.087643

Article  CAS  Google Scholar 

Jean-St-Michel E, Manlhiot C, Li J et al (2011) Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc 43:1280–1286. https://doi.org/10.1249/MSS.0b013e318206845d

Article  Google Scholar 

Jones AM (2014) Dietary nitrate supplementation and exercise performance. Sports Med 44(Suppl 1):S35-45. https://doi.org/10.1007/s40279-014-0149-y

Article  Google Scholar 

Kaufman MP, Longhurst JC, Rybicki KJ et al (1983) Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol Respir Environ Exerc Physiol 55:105–112. https://doi.org/10.1152/jappl.1983.55.1.105

Article  CAS  Google Scholar 

Kenntner-Mabiala R, Andreatta M, Wieser MJ et al (2008) Distinct effects of attention and affect on pain perception and somatosensory evoked potentials. Biol Psychol 78:114–122. https://doi.org/10.1016/j.biopsycho.2008.01.007

Article  Google Scholar 

Kermavnar T, Power V, De Eyto A, O’Sullivan LW (2018) Computerized cuff pressure algometry as guidance for circumferential tissue compression for wearable soft robotic applications: a systematic review. Soft Rob 5:1–16. https://doi.org/10.1089/soro.2017.0046

留言 (0)

沒有登入
gif