Predicting tumour radiosensitivity to deliver precision radiotherapy

Ringborg, U. et al. The Swedish Council on Technology Assessment in Health Care (SBU) systematic overview of radiotherapy for cancer including a prospective survey of radiotherapy practice in Sweden 2001 – Summary and conclusions. Acta Oncol. 42, 357–365 (2003).

Article  Google Scholar 

Mackie, T. R. et al. Image guidance for precise conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 89–105 (2003).

Article  Google Scholar 

Li, G. et al. Advances in 4D medical imaging and 4D radiation therapy. Technol. Cancer Res. Treat. 7, 67–81 (2008).

Article  CAS  Google Scholar 

Otto, K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med. Phys. 35, 310–317 (2008).

Article  Google Scholar 

Teoh, M., Clark, C. H., Wood, K., Whitaker, S. & Nisbet, A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br. J. Radiol. 84, 967–996 (2011).

Article  CAS  Google Scholar 

Yu, C. X. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys. Med. Biol. 40, 1435–1449 (1995).

Article  CAS  Google Scholar 

Rivera, A. L. et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol. 12, 116–121 (2010).

Article  CAS  Google Scholar 

Rouzier, R. et al. Multigene assays and molecular markers in breast cancer: systematic review of health economic analyses. Breast Cancer Res. Treat. 139, 621–637 (2013).

Article  CAS  Google Scholar 

Redza-Dutordoir, M. & Averill-Bates, D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 1863, 2977–2992 (2016).

Article  CAS  Google Scholar 

Maier, P., Hartmann, L., Wenz, F. & Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci. 17, 102 (2016).

Article  Google Scholar 

Ouellette, M. M., Zhou, S. & Yan, Y. Cell signaling pathways that promote radioresistance of cancer cells. Diagnostics 12, 656 (2022).

Article  CAS  Google Scholar 

Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

Article  CAS  Google Scholar 

Kumari, S. et al. Immunomodulatory effects of radiotherapy. Int. J. Mol. Sci. 21, 8151 (2020).

Article  CAS  Google Scholar 

Ghasemi, Z. et al. Fractionated radiation promotes proliferation and radioresistance in bystander A549 cells but not in bystander HT29 cells. Life Sci. 257, 118087 (2020).

Article  CAS  Google Scholar 

Chalmers, A. J. & Carruthers, R. D. Radiobiology summaries: DNA damage and repair. Clin. Oncol. 33, 275–278 (2021).

Article  CAS  Google Scholar 

Feng, W., Smith, C. M., Simpson, D. A. & Gupta, G. P. Targeting non-homologous and alternative end joining repair to enhance cancer radiosensitivity. Semin. Radiat. Oncol. 32, 29–41 (2022).

Article  Google Scholar 

Chang, H. H. Y., Pannunzio, N. R., Adachi, N. & Lieber, M. R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506 (2017).

Article  CAS  Google Scholar 

Wyatt, D. W. et al. Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol. Cell 63, 662–673 (2016).

Article  CAS  Google Scholar 

Li, X. & Heyer, W. D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

Article  CAS  Google Scholar 

Weber, A. M. & Ryan, A. J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124–138 (2015).

Article  CAS  Google Scholar 

Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J. & Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression. Cell Death Differ. 25, 104–113 (2018).

Article  CAS  Google Scholar 

Engeland, K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 25, 114–132 (2018).

Article  CAS  Google Scholar 

Baumann, M. et al. EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother. Oncol. 83, 238–248 (2007).

Article  CAS  Google Scholar 

Thiruthaneeswaran, N. et al. Lost in application: measuring hypoxia for radiotherapy optimisation. Eur. J. Cancer 148, 260–276 (2021).

Article  CAS  Google Scholar 

West, C. M. & Slevin, F. Tumour hypoxia. Clin. Oncol. 31, 595–599 (2019).

Article  CAS  Google Scholar 

Wouters, B. G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8, 851–864 (2008).

Article  CAS  Google Scholar 

Bolland, H., Ma, T. S., Ramlee, S., Ramadan, K. & Hammond, E. M. Links between the unfolded protein response and the DNA damage response in hypoxia: a systematic review. Biochem. Soc. Trans. 49, 1251–1263 (2021).

Article  CAS  Google Scholar 

Yaromina, A. et al. Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother. Oncol. 96, 116–122 (2010).

Article  Google Scholar 

Tang, M., Bolderson, E., O’Byrne, K. J. & Richard, D. J. Tumor hypoxia drives genomic instability. Front. Cell Dev. Biol. 9, 626229 (2021).

Article  Google Scholar 

Semenza, G. L. Heritable disorders of oxygen sensing. Am. J. Med. Genet. A 185, 3334–3339 (2021).

Article  CAS  Google Scholar 

Semenza, G. L. The genomics and genetics of oxygen homeostasis. Annu. Rev. Genomics Hum. Genet. 21, 183–206. (2020).

Article  CAS  Google Scholar 

Vadysirisack, D. & Ellisen, L. W. mTOR activity under hypoxia. Methods Mol. Biol. 821, 44–58 (2012).

Google Scholar 

Liu, K. X., Everdell, E., Pal, S., Haas-Kogan, D. A. & Milligan, M. G. Harnessing lactate metabolism for radiosensitization. Front. Oncol. 11, 672339 (2021).

Article  Google Scholar 

Peitzsch, C., Kurth, I., Ebert, N., Dubrovska, A. & Baumann, M. Cancer stem cells in radiation response: current views and future perspectives in radiation oncology. Int. J. Radiat. Biol. 95, 900–911 (2019).

Article  CAS  Google Scholar 

Linge, A. et al. HPV status, cancer stem cell marker expression, hypoxia gene signatures and tumour volume identify good prognosis subgroups in patients with HNSCC after primary radiochemotherapy: a multicentre retrospective study of the German Cancer Consortium Radiation. Radiother. Oncol. 121, 364–373 (2016).

Article  Google Scholar 

Vlashi, E. & Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Semin. Cancer Biol. 31, 28–35 (2015).

Article  CAS  Google Scholar 

Lee, S. Y. et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer 16, 10 (2017).

Article  Google Scholar 

Quail, D. F., Taylor, M. J. & Postovit, L. M. Microenvironmental regulation of cancer stem cell phenotypes. Curr. Stem Cell Res. Ther. 7, 197–216 (2012).

Article  CAS  Google Scholar 

Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

Article  CAS  Google Scholar 

Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

Article  CAS  Google Scholar 

Peitzsch, C., Kurth, I., Kunz-Schughart, L., Baumann, M. & Dubrovska, A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother. Oncol. 108, 378–387 (2013).

Article  Google Scholar 

Zhong, J. T. et al. GLUT-1 siRNA enhances radiosensitization of laryngeal cancer stem cells via enhanced DNA damage, cell cycle redistribution, and promotion of apoptosis in vitro and in vivo. Onco Targets Ther. 12, 9129–9142 (2019).

Article  CAS  Google Scholar 

Kaseb, H. O., Fohrer-Ting, H. F., Lewis, D. W., Lagasse, E. & Gollin, S. Identification, expansion and characterization of cancer cells with stem cell properties from head and neck squamous cell carcinomas. Exp. Cell Res. 348, 75–86 (2016).

Article  CAS  Google Scholar 

Emami Nejad, A. et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 21, 1–26 (2021).

Article  Google Scholar 

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  Google Scholar 

Kachikwu, E. L. et al. Radiation enhances regulatory T cell representation. Int. J. Radiat. Oncol. Biol. Phys. 81, 1128–1135 (2011).

Article  Google Scholar 

Honeychurch, J. & Illidge, T. M. The influence of radiation in the context of developing combination immunotherapies in cancer. Ther. Adv. Vaccines Immunother. 5, 115–122 (2017).

Article  CAS 

留言 (0)

沒有登入
gif