How synonymous mutations alter enzyme structure and function over long timescales

Komar, A. A., Lesnik, T. & Reiss, C. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett. 462, 387–391 (1999).

Article  CAS  PubMed  Google Scholar 

Zhao, F., Yu, C.-H. & Liu, Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res. 45, 8484–8492 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer, P. S., Siller, E., Anderson, J. F. & Barral, J. M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328–335 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunt, R. et al. A single synonymous variant (c.354G>A [p.P118P]) in ADAMTS13 confers enhanced specific activity. Int. J. Mol. Sci. 20, 5734 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crombie, T., Boyle, J. P., Coggins, J. R. & Brown, A. J. The folding of the bifunctional TRP3 protein in yeast is influenced by a translational pause which lies in a region of structural divergence with Escherichia coli indoleglycerol‐phosphate synthase. Eur. J. Biochem. 226, 657–664 (1994).

Article  CAS  PubMed  Google Scholar 

Walsh, I. M. Testing the Effects of Synonymous Codon Usage on Co-Translational Protein Folding Using Novel Experimental and Computational Techniques. PhD thesis, Univ. Notre Dame (2019).

Yu, C.-H. et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol. Cell 59, 744–754 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walsh, I. M., Bowman, M. A., Santarriaga, I. F. S., Rodriguez, A. & Clark, P. L. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc. Natl Acad. Sci. USA 117, 3528–3534 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sala, A. J., Bott, L. C. & Morimoto, R. I. Shaping proteostasis at the cellular, tissue, and organismal level. J. Cell Biol. 216, 1231–1241 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y. et al. Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts. Proc. Natl Acad. Sci. USA 111, 4449–4454 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buhr, F. et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell 61, 341–351 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martelli, P. L., Fariselli, P. & Casadio, R. Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network. Proteomics 4, 1665–1671 (2004).

Article  CAS  PubMed  Google Scholar 

Niemyska, W. et al. Complex lasso: new entangled motifs in proteins. Sci. Rep. 6, 36895 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sulkowska, J. I. On folding of entangled proteins: knots, lassos, links and θ-curves. Curr. Opin. Struct. Biol. 60, 131–141 (2020).

Article  CAS  PubMed  Google Scholar 

Baiesi, M., Orlandini, E., Seno, F. & Trovato, A. Sequence and structural patterns detected in entangled proteins reveal the importance of co-translational folding. Sci. Rep. 9, 8426 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Baiesi, M., Orlandini, E., Seno, F. & Trovato, A. Exploring the correlation between the folding rates of proteins and the entanglement of their native states. J. Phys. A: Math. Theor. 50, 504001 (2017).

Connolly, M. L., Kuntz, I. & Crippen, G. M. Linked and threaded loops in proteins. Biopolymers 19, 1167–1182 (1980).

Article  CAS  PubMed  Google Scholar 

Jarmolinska, A. I., Gambin, A. & Sulkowska, J. I. Knot_pull—python package for biopolymer smoothing and knot detection. Bioinformatics 36, 953–955 (2020).

CAS  PubMed  Google Scholar 

Jennings, P. A., Finn, B. E., Jones, B. E. & Matthews, C. R. A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry 32, 3783–3789 (1993).

Article  CAS  PubMed  Google Scholar 

Garbuzynskiy, S. O., Ivankov, D. N., Bogatyreva, N. S. & Finkelstein, A. V. Golden triangle for folding rates of globular proteins. Proc. Natl Acad. Sci. USA 110, 147–150 (2013).

Article  CAS  PubMed  Google Scholar 

Nissley, D. A. et al. Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble and less functional. Nat. Commun. 13, 3081 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, Y. et al. Global analysis of protein structural changes in complex proteomes. Nat. Biotechnol. 32, 1036–1044 (2014).

Article  CAS  PubMed  Google Scholar 

Kröger, M. Developments in polymer theory and simulation. Polymers (Basel) 12, 30 (2019).

Article  PubMed  Google Scholar 

Pawlak, A. The entanglements of macromolecules and their influence on the properties of polymers. Macromol. Chem. Phys. 220, 1900043 (2019).

Article  Google Scholar 

Sułkowska, J. I., Sułkowski, P. & Onuchic, J. Dodging the crisis of folding proteins with knots. Proc. Natl Acad. Sci. USA 106, 3119–3124 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Haglund, E. et al. Pierced lasso bundles are a new class of knot-like motifs. PLoS Comput. Biol. 10, e1003613 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Haglund, E. et al. The unique cysteine knot regulates the pleotropic hormone leptin. PLoS ONE 7, e45654 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

Article  CAS  PubMed  Google Scholar 

Yang, H. et al. Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266 (2003).

Article  CAS  PubMed  Google Scholar 

Heidary, D. K., O’Neill, J. C., Roy, M. & Jennings, P. A. An essential intermediate in the folding of dihydrofolate reductase. Proc. Natl Acad. Sci. USA 97, 5866–5870 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bitran, A., Jacobs, W. M., Zhai, X. & Shakhnovich, E. Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proc. Natl Acad. Sci. USA 117, 1485–1495 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

Article  Google Scholar 

O’Brien, E. P., Christodoulou, J., Vendruscolo, M. & Dobson, C. M. Trigger factor slows co-translational folding through kinetic trapping while sterically protecting the nascent chain from aberrant cytosolic interactions. J. Am. Chem. Soc. 134, 10920–10932 (2012).

Article  PubMed  Google Scholar 

Sharma, A. K., Bukau, B. & O’Brien, E. P. Physical origins of codon positions that strongly influence cotranslational folding: a framework for controlling nascent-protein folding. J. Am. Chem. Soc. 138, 1180–1195 (2016).

Article  CAS  PubMed  Google Scholar 

Fritch, B. et al. Origins of the mechanochemical coupling of peptide bond formation to protein synthesis. J. Am. Chem. Soc. 140, 5077–5087 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nissley, D. A. & O’Brien, E. P. Structural origins of FRET-observed nascent chain compaction on the ribosome. J. Phys. Chem. B 122, 9927–9937 (2018).

Article  CAS  PubMed  Google Scholar 

Leininger, S. E., Trovato, F., Nissley, D. A. & O’Brien, E. P. Domain topology, stability, and translation speed determine mechanical force generation on the ribosome. Proc. Natl Acad. Sci. USA 116, 5523–5532 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nissley, D. A. et al. Electrostatic interactions govern extreme nascent protein ejection times from ribosomes and can delay ribosome recycling. J. Am. Chem. Soc. 142, 6103–6110 (2020).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif