Lineage switch in a pediatric patient with KMT2A-MLLT3 from acute megakaryoblastic leukemia to T cell acute lymphoblastic leukemia at the fourth relapse after allo-HSCT: with literature review

Schweitzer J, Zimmermann M, Rasche M, von Neuhoff C, Creutzig U, Dworzak M, et al. Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial. Ann Hematol. 2015;94(8):1327–36. https://doi.org/10.1007/s00277-015-2383-2.

Article  Google Scholar 

Inaba H, Zhou Y, Abla O, Adachi S, Auvrignon A, Beverloo HB, et al. Heterogeneous cytogenetic subgroups and outcomes in childhood acute megakaryoblastic leukemia: a retrospective international study. Blood. 2015;126(13):1575–84. https://doi.org/10.1182/blood-2015-02-629204.

Article  Google Scholar 

Maarouf N, Mahmoud S, Khedr R, Lehmann L, Shaaban K, Ibrahim S, et al. Outcome of childhood acute megakaryoblastic leukemia: children’s cancer hospital Egypt 57357 experience. Clin Lymphoma Myeloma Leuk. 2019;19(3):e142–52. https://doi.org/10.1016/j.clml.2018.12.011.

Article  Google Scholar 

Klairmont MM, Hoskoppal D, Yadak N, Choi JK. The comparative sensitivity of immunohistochemical markers of megakaryocytic differentiation in acute megakaryoblastic leukemia. Am J Clin Pathol. 2018;150(5):461–7. https://doi.org/10.1093/ajcp/aqy074.

Article  Google Scholar 

Dowling GP, Piccin A, Gavin KT, Betts DR, Malone A, Cotter M, et al. A retrospective study of myeloid leukaemia in children with Down syndrome in Ireland. Ir J Med Sci. 2020;189(3):979–84. https://doi.org/10.1007/s11845-020-02181-y.

Article  Google Scholar 

De Marchi F, Araki M, Komatsu N. Molecular features, prognosis, and novel treatment options for pediatric acute megakaryoblastic leukemia. Expert Rev Hematol. 2019;12(5):285–93. https://doi.org/10.1080/17474086.2019.1609351.

Article  Google Scholar 

Buldini B, Rizzati F, Masetti R, Fagioli F, Menna G, Micalizzi C, et al. Prognostic significance of flow-cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the AIEOP-AML 2002/01 study protocol. Br J Haematol. 2017;177(1):116–26. https://doi.org/10.1111/bjh.14523.

Article  Google Scholar 

Teyssier AC, Lapillonne H, Pasquet M, Ballerini P, Baruchel A, Ducassou S, et al. Acute megakaryoblastic leukemia (excluding Down syndrome) remains an acute myeloid subgroup with inferior outcome in the French ELAM02 trial. Pediatr Hematol Oncol. 2017;34(8):425–7. https://doi.org/10.1080/08880018.2017.1414905.

Article  Google Scholar 

de Rooij JD, Masetti R, van den Heuvel-Eibrink MM, Cayuela JM, Trka J, Reinhardt D, et al. Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood. 2016;127(26):3424–30. https://doi.org/10.1182/blood-2016-01-695551.

Article  Google Scholar 

Rossi JG, Bernasconi AR, Alonso CN, Rubio PL, Gallego MS, Carrara CA, et al. Lineage switch in childhood acute leukemia: an unusual event with poor outcome. Am J Hematol. 2012;87(9):890–7. https://doi.org/10.1002/ajh.23266.

Article  Google Scholar 

Sakaki H, Kanegane H, Nomura K, Goi K, Sugita K, Miura M, et al. Early lineage switch in an infant acute lymphoblastic leukemia. Int J Hematol. 2009;90(5):653–5. https://doi.org/10.1007/s12185-009-0446-7.

Article  Google Scholar 

Wu B, Jug R, Luedke C, Su P, Rehder C, McCall C, et al. lineage switch between B-lymphoblastic leukemia and acute myeloid leukemia intermediated by “occult” myelodysplastic neoplasm: two cases of adult patients with evidence of genomic instability and clonal selection by chemotherapy. Am J Clin Pathol. 2017;148(2):136–47. https://doi.org/10.1093/ajcp/aqx055.

Article  Google Scholar 

Ittel A, Jeandidier E, Helias C, Perrusson N, Humbrecht C, Lioure B, et al. First description of the t (10;11) (q22;q23)/MLL-TET1 translocation in a T-cell lymphoblastic lymphoma, with subsequent lineage switch to acute myelomonocytic myeloid leukemia. Haematologica. 2013;98(12):e166–8. https://doi.org/10.3324/haematol.2013.096750.

Article  Google Scholar 

Stass S, Mirro J, Melvin S, Pui CH, Murphy SB, Williams D. Lineage switch in acute leukemia. Blood. 1984;64(3):701–6.

Article  Google Scholar 

Stasik C, Ganguly S, Cunningham MT, Hagemeister S, Persons DL. Infant acute lymphoblastic leukemia with t (11;16) (q23;p13.3) and lineage switch into acute monoblastic leukemia. Cancer Genet Cytogenet. 2006;168(2):146–9. https://doi.org/10.1016/j.cancergencyto.2006.02.013.

Article  Google Scholar 

Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008;452(7188):764–7. https://doi.org/10.1038/nature06840.

Article  Google Scholar 

Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, et al. Adult T-cell progenitors retain myeloid potential. Nature. 2008;452(7188):768–72. https://doi.org/10.1038/nature06839.

Article  Google Scholar 

Guruharsha KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet. 2012;13(9):654–66. https://doi.org/10.1038/nrg3272.

Article  Google Scholar 

Fang-Fang Z, You Y, Wen-Jun L. Progress in research on childhood T-cell acute lymphocytic leukemia, Notch1 signaling pathway, and its inhibitors: a review. Bosn J Basic Med Sci. 2021;21(2):136–44. https://doi.org/10.17305/bjbms.2020.4687.

Article  Google Scholar 

Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013;126(Pt 10):2135–40. https://doi.org/10.1242/jcs.127308.

Article  Google Scholar 

Ferrando AA. The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Progr. 2009;2009:353–61. https://doi.org/10.1182/asheducation-2009.1.353.

Article  Google Scholar 

留言 (0)

沒有登入
gif