Nanoformulations of flavonoids for diabetes and microvascular diabetic complications

Inzucchi SE, Majumdar SK. Current therapies for the medical management of diabetes. Obstet Gynecol. 2016. https://doi.org/10.1097/AOG.0000000000001332.

Article  Google Scholar 

Sattar N, Petrie MC, Zinman B, Januzzi JL. Novel diabetes drugs and the cardiovascular specialist. J Am Coll Cardiol. 2017. https://doi.org/10.1016/j.jacc.2017.04.014.

Article  Google Scholar 

Sharma A, Cooper LB, Fiuzat M, Mentz RJ, Ferreira JP, Butler J, et al. Antihyperglycemic therapies to treat patients with heart failure and diabetes mellitus. JACC Hear Fail. 2018. https://doi.org/10.1016/j.jchf.2018.05.020.

Article  Google Scholar 

Diamant M, Heine RJ. Thiazolidinediones in type 2 diabetes mellitus. Drugs. 2012;2003:6313. https://doi.org/10.2165/00003495-200363130-00004.

Article  Google Scholar 

Nauck MA, Ellis GC, Fleck PR, Wilson CA, Mekki Q. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract. 2009. https://doi.org/10.1111/j.1742-1241.2008.01933.

Article  Google Scholar 

Fass AD, Gershman JA. Efficacy and safety of dipeptidyl peptidase-4 inhibitors in combination with metformin. Adv Ther. 2013. https://doi.org/10.1007/s12325-013-0023-6.

Article  Google Scholar 

Saenz A, Fernandez-Esteban I, Mataix A, Segura MA, Roqué i Figuls M, Moher D. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005. https://doi.org/10.1002/14651858.CD002966.

Douros A, Lix LM, Fralick M, Dell’Aniello S, Shah BR, Ronksley PE, et al. Sodium-glucose cotransporter-2 inhibitors and the risk for diabetic ketoacidosis : a multicenter cohort study. Ann Intern Med. 2020. https://doi.org/10.7326/M20-0289.

Article  Google Scholar 

Feingold KR. Oral and Injectable (Non-insulin) Pharmacological agents for type 2 diabetes. Endotext. MDText.com, Inc. 2000; PUBMED:25905364

Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: an update. Am Fam Physician. 2016;PMID: 27479625

Lenox RH, Frazer A. Mechanism of action of antidepressants and mood stabilizers. Neuropsychopharmacol Fifth Gener Prog. 2002.

Shouip Hossam A. Tramadol synthesis and mechanism of action. Fac Pharm Pharm Ind Univ. 2015.

Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. Citalopram--a review of pharmacological and clinical effects. J Psychiatry Neurosci. Canadian Medical Association. 2000. PMCID:PMC1407724, PMID: 10863884

Gopal L, Sharma T. Use of intravitreal injection of triamcinolone acetonide in the treatment of age-related macular degeneration. Indian J Ophthalmol. 2007. https://doi.org/10.4103/0301-4738.36477.

Chang-Lin JE, Attar M, Acheampong AA, Robinson MR, Whitcup SM, Kuppermann BD, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Investig Ophthalmol Vis Sci. 2011;10.1167 /iovs.10–5285

Taugourdeau-Raymond S, Rouby F, Default A, Jean-Pastor MJ. Bevacizumab-induced serious side-effects: a review of the French pharmacovigilance database. Eur J Clin Pharmacol. 2012. https://doi.org/10.1007/s00228-012-1232-7.

Article  Google Scholar 

Muqit MMK, Sanghvi C, McLauchlan R, Delgado C, Young LB, Charles SJ, et al. Study of clinical applications and safety for Pascal® laser photocoagulation in retinal vascular disorders. Acta Ophthalmol. 2012. https://doi.org/10.1111/j.1755-3768.2009.01854.

Article  Google Scholar 

Gawȩcki M. Micropulse laser treatment of retinal diseases. J Clin Med. 2019. https://doi.org/10.3390/jcm8020242.

Article  Google Scholar 

Lim AKH. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis. 2014. https://doi.org/10.2147/IJNRD.S40172.

Article  Google Scholar 

Shafiq MM, Menon DV, Victor RG. Oral direct renin inhibition: premise, promise, and potential limitations of a new class of antihypertensive drug. Am J Med. 2008. https://doi.org/10.1016/J.AMJMED.2007.11.016.

Article  Google Scholar 

Bansal D, Badhan Y, Gudala K, Schifano F. Ruboxistaurin for the treatment of diabetic peripheral neuropathy: a systematic review of randomized clinical trials. Diabetes Metab J. 2013. https://doi.org/10.4093/dmj.2013.37.5.375.

Article  Google Scholar 

Javey G, Schwartz SG, Flynn HW, Aiello LP, Sheetz MJ. Ruboxistaurin: review of safety and efficacy in the treatment of diabetic retinopathy. Clin Med Insights Ther. 2010. https://doi.org/10.4137/cmt.s5046.

Article  Google Scholar 

Schemmel KE, Padiyara RS, D’Souza JJ. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J Diabetes Complications; 2010. http://dx.doi.org/10.1016/j.jdiacomp.2009.07.005.

Oak JH, Youn JY, Cai H. Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice. Cardiovasc Diabetol. 2009. https://doi.org/10.1186/1475-2840-8-65.

Article  Google Scholar 

US7455830B2 - Nanoparticles for protein drug delivery. 2015.

RU02394590 - Application of local composition, containing epidermal growth factor (EGF), for prevention of amputation caused by diabetic foot. 2010.

CN103169719 - Application of anthracene nucleus antibiotic and its pharmaceutical salt for treating diabetic eye diseases. 2013.

IN718/CHE/2013 - Drug for treatment of diabetes and diabetic foot ulcer using rutin loaded solid lipid nanoparticles. 2014.

RU0002616525 - Application of lactoprotein micelles for babies with risk of obesity or diabetes. 2017.

JP6856546B2-Glucose-responsive insulin delivery system using hypoxia-sensitive nanocomposites. 2017.

Mohan S, Nandhakumar L. Role of various flavonoids: hypotheses on novel approach to treat diabetes. J Med Hypotheses Ideas . Tehran University of Medical Sciences; 2014. http://dx.doi.org/10.1016/j.jmhi.2013.06.001.

Tanveer A, Akram K, Farooq U, Hayat Z, Shafi A. Management of diabetic complications through fruit flavonoids as a natural remedy. Crit Rev Food Sci Nutr. 2017. http://dx.doi.org/10.1080/10408398.2014.1000482.

Chen J, Mangelinckx S, Adams A, Wang ZT, Li WL, De Kimpe N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat Prod Commun. 2015. https://doi.org/10.1177/1934578x1501000140.

Article  Google Scholar 

Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: an update. Life Sci; 2018; https://doi.org/10.1016/j.lfs.2018.10.066.

Khajuria R, Singh S, Bahl A. General introduction and sources of flavonoids. Curr Asp Flavonoids Their Role Cancer Treat. 2019. https://doi.org/10.1007/978-981-13-5874-6-1.

Article  Google Scholar 

Jucá MM, Cysne Filho FMS, de Almeida JC, Mesquita D da S, Barriga JR de M, Dias KCF, et al. Flavonoids: biological activities and therapeutic potential. Nat Prod Res. 2020; https://doi.org/10.1080/14786419.2018.1493588.

Agochukwu-Mmonu N, Pop-Busui R, Wessells H, Sarma AV. Autonomic neuropathy and urologic complications in diabetes. Auton Neurosci Basic Clin; 2020; https://doi.org/10.1016/j.autneu.2020.102736.

Sango K, Yamauchi J. Schwann cell development and pathology. Schwann Cell Dev Pathol. 2013. https://doi.org/10.1007/978-4-431-54764-8.

Article  Google Scholar 

Obrosova IG. Update on the pathogenesis of diabetic neuropathy. Curr Diab Rep. 2003. https://doi.org/10.1007/s11892-003-0005-1.

Article  Google Scholar 

Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004. https://doi.org/10.1210/er.2003-0019.

Article  Google Scholar 

Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Investig. 2011. https://doi.org/10.1111/j.2040-1124.2010.00070.

Article  Google Scholar 

Muc R, Saracen A, Grabska-Liberek I. Associations of diabetic retinopathy with retinal neurodegeneration on the background of diabetes mellitus. Overview of recent medical studies with an assessment of the impact on healthcare systems. Open Med. 2018; https://doi.org/10.1515/med-2018-0008.

Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016. https://doi.org/10.1016/j.molcel.2016.02.022.

Article  Google Scholar 

Roy S, Kim D, Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J Clin Med. 2019;8:1363. https://doi.org/10.3390/jcm8091363.

Pernas L, Scorrano L. Mito-Morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 2016. p. 505–31. https://doi.org/10.1146/annurev-physiol-021115-105011.

van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol . Cold Spring Harbor Laboratory Press. 2013; https://doi.org/10.1101/cshperspect.a011072.

Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science (80-. ). American Association for the Advancement of Science; 2012. p. 1062–5. 10.1126/ science.1219855

Perico N, Benigni A, Remuzzi G. Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection . Nat. Rev. Drug Discov; 2008. p. 936–53. https://doi.org/10.1038/nrd2685.

Ruggenenti P, Cravedi P, Remuzzi G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol . Nature Publishing Group; 2010. https://doi.org/10.1038/nrneph.2010.58.

Cerutti PA, Trump BF. Inflammation and oxidative stress in carcinogenesis. Cancer Cells. 1991. https://doi.org/10.1007/978-1-4615-3520-1_75.

Article  Google Scholar 

Kashihara N, Haruna Y, K Kondeti V, S Kanwar Y. Oxidative stress in diabetic nephropathy. Curr Med Chem. 2010. https://doi.org/10.2174/092986710793348581.

Angelova A, Rakotoarisoa M. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines. 2018. https://doi.org/10.3390/medicines5040126.

Article  Google Scholar 

Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interface Sci . Elsevier B.V; 2017. http://dx.doi.org/10.1016/j.cis.2017.04.006.

Angelova A, Drechsler M, Garamus VM, Angelov B. Pep-Lipid Cubosomes and Vesicles Compartmentalized by micelles from self-assembly of multiple neuroprotective building blocks including a large peptide hormone PACAP-DHA. ChemNanoMat. 2019. https://doi.org/10.1002/cnma.201900468.

Article  Google Scholar 

Angelova A, Angelov B. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regen Res. 2017. https://doi.org/10.4103/1673-5374.208546.

Article  Google Scholar 

Maherani B, Arab-Tehrany E, R Mozafari M, Gaiani C, Linder M. Liposomes: a review of manufacturing techniques and targeting strategies. Curr Nanosci. 2011 http://dx.doi.org/10.2174/157341311795542453.

Anderluzzi G, Lou G, Su Y, Perrie Y. Scalable manufacturing processes for solid lipid nanoparticles. Pharm Nanotechnol. 2019. https://doi.org/10.2174/2211738507666190925112942.

Article  Google Scholar 

Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure preparation and application. Adv. Pharm. Bull. 2015. p. 305–13. http://dx.doi.org/10.15171/apb.2015.043.

Aguilar ZP. Types of nanomaterials and corresponding methods of synthesis. Nanomater Med Appl. 2013. https://doi.org/10.1016/B978-0-12-385089-8.00002-9.

Article  Google Scholar 

Woodhead JL, Hall CK. Encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles. Macromolecules. 2011. https://doi.org/10.1021/ma102938g.

Article  Google Scholar 

Singh J, Mittal P, Vasant Bonde G, Ajmal G, Mishra B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells, Nanomedicine Biotechnol. 2018; https://doi.org/10.1080/21691401.2018.1501379.

Zielinska A, Carreiró F, Oliveira AM, Neves A, Pires B, Nagasamy Venkatesh D, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020. https://doi.org/10.3390/molecules25163731.

Article  Google Scholar 

Wang Y, Li P, Tran TTD, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016. https://doi.org/10.3390/nano6020026.

Article  Google Scholar 

Kittler S, Greulich C, Diendorf J, Köller M, Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater American Chemical Society. 2010. https://doi.org/10.1021/cm100023p.

Article  Google Scholar 

Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int J Pharm. 2019. https://doi.org/10.1016/j.ijpharm.2019.118642.

Article  Google Scholar 

Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: a systematic review of the literature. Biomed Pharmacother. 2019. https://doi.org/10.1016/j.biopha.2018.10.130.

Article  Google Scholar 

Alam MM, Abdullah KM, Singh BR, Naqvi AH, Naseem I. Ameliorative effect of quercetin nanorods on diabetic mice: mechanistic and therapeutic strategies. RSC Adv Royal Soc Chem. 2016. http://dx.doi.org/10.1039/C6RA04821H.

Ebrahimpour S, Esmaeili A, Beheshti S. Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine. 2018. https://doi.org/10.2147/IJN.S177871.

Article  Google Scholar 

Mukhopadhyay P, Prajapati AK. Quercetin in antidiabetic research and strategies for improved quercetin bioavailability using polymer-based carriers-a review. RSC Adv Royal Sociry. 2015. https://doi.org/10.1039/C5RA18896B.

Article  Google Scholar 

Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin-induced diabetic rat model. Drug Deliv Transl Res. 2012. https://doi.org/10.1007/s13346-012-0063-5.

Article  Google Scholar 

Wang S, Du S, Wang W, Zhang F. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2020.110573.

Article  Google Scholar 

Rishitha N, Muthuraman A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci. Pergamon; 2018; https://doi.org/10.1016/J.LFS.2018.03.010.

Singh S, Kushwah V, Agrawal AK, Jain S. Insulin- and quercetin-loaded liquid crystalline nanoparticles: implications on oral bioavailability, antidiabetic and antioxidant efficacy. Nanomedicine. 2018. https://doi.org/10.2217/nnm-2017-0278.

Article  Google Scholar 

留言 (0)

沒有登入
gif