Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples

Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19(2):77–94. https://doi.org/10.1038/s41579-020-0438-4.

Article  PubMed  CAS  Google Scholar 

Martinez KB, Leone V, Chang EB. Microbial metabolites in health and disease: navigating the unknown in search of function. J Biol Chem. 2017;292(21):8553–9. https://doi.org/10.1074/jbc.R116.752899.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu DH, Meng X, de Vos WM, Wu H, Fang XX, Maiti AK. Implications of gut microbiota in complex human diseases. Int J Mol Sci. 2021;22(23):12661. https://doi.org/10.3390/ijms222312661.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rysz J, Franczyk B, Lawinski J, Olszewski R, Cialkowska-Rysz A, Gluba-Brzozka A. The impact of CKD on uremic toxins and gut microbiota. Toxins. 2021;13(4):252. https://doi.org/10.3390/toxins13040252.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sampaio-Maia B, Simões-Silva L, Pestana M, Araújo R, Soares-Silva IJ. The role of the gut microbiome on chronic kidney disease. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology, vol. 96. Amsterdam: Elsevier; 2016. p. 65–94.

Google Scholar 

Wang XF, Yang ST, Li SH, Zhao L, Hao YL, Qin JJ, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020;69(12):2131–42. https://doi.org/10.1136/gutjnl-2019-319766.

Article  PubMed  CAS  Google Scholar 

Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: a comprehensive update. Toxins. 2018;10(1):1–57. https://doi.org/10.3390/toxins10010033.

Article  CAS  Google Scholar 

Vanholder R, Schepers E, Pletinck A, Neirynck N, Glorieux G. An update on protein-bound uremic retention solutes. J Renal Nutr. 2012;22(1):90–4. https://doi.org/10.1053/j.jrn.2011.10.026.

Article  CAS  Google Scholar 

Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70. https://doi.org/10.1681/asn.2011121175.

Article  PubMed  PubMed Central  CAS  Google Scholar 

EUTox. The European Uremic Toxins (EUTox) database. Available online at www.uremic-toxins.org. Accessed 24 Aug 2022.

Lim YJ, Sidor NA, Tonial NC, Che A, Urquhart BL. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins. 2021;13(2):142. https://doi.org/10.3390/toxins13020142.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of colon-derived uremic solutes. Clin J Am Soc Nephrol. 2018;13(9):1398–404. https://doi.org/10.2215/cjn.03150318.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, et al. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE-TOFMS-based metabolomics approach. Kidney Int. 2017;92(3):634–45. https://doi.org/10.1016/j.kint.2017.02.011.

Article  PubMed  CAS  Google Scholar 

Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease see. Kidney Int. 2020;97(6):1230–42. https://doi.org/10.1016/j.kint.2020.01.028.

Article  PubMed  CAS  Google Scholar 

Belinato JR, Acquaro VR, Cappelini LTD, Augusto F. New prospects and problems in sample preparation methods for microbiome analysis. Trac-Trends Anal Chem. 2021;143: 116356. https://doi.org/10.1016/j.trac.2021.116356.

Article  CAS  Google Scholar 

Zhou LN, Yu D, Zheng SJ, Ouyang RZ, Wang YT, Xu GW. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trac-Trends Anal Chem. 2021;143: 116375. https://doi.org/10.1016/j.trac.2021.116375.

Article  CAS  Google Scholar 

Al Za’abi M, Ali B, Al Toubi M. HPLC-fluorescence method for measurement of the uremic toxin indoxyl sulfate in plasma. J Chromatogr Sci. 2013;51(1):40-3. https://doi.org/10.1093/chromsci/bms103.

Calaf R, Cerini C, Genovesio C, Verhaeghe P, Jourde-Chiche N, Berge-Lefranc D, et al. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B. 2011;879(23):2281–6. https://doi.org/10.1016/j.jchromb.2011.06.014.

Article  CAS  Google Scholar 

Cuoghi A, Caiazzo M, Bellei E, Monari E, Bergamini S, Palladino G, et al. Quantification of p-cresol sulphate in human plasma by selected reaction monitoring. Anal Bioanal Chem. 2012;404(6–7):2097–104. https://doi.org/10.1007/s00216-012-6277-z.

Article  PubMed  CAS  Google Scholar 

de Loor H, Poesen R, De Leger W, Dehaen W, Augustijns P, Evenepoel P, et al. A liquid chromatography-tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism. Anal Chim Acta. 2016;936:149–56. https://doi.org/10.1016/j.aca.2016.06.057.

Article  PubMed  CAS  Google Scholar 

Fabresse N, Uteem I, Lamy E, Massy Z, Larabi IA, Alvarez JC. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: comparison of rapid equilibrium dialysis and ultrafiltration. Clin Chim Acta. 2020;507:228–35. https://doi.org/10.1016/j.cca.2020.04.032.

Article  PubMed  CAS  Google Scholar 

Korytowska N, Wyczalkowska-Tomasik A, Wisniewska A, Paczek L, Giebultowicz J. Development of the LC-MS/MS method for determining the p-cresol level in plasma. J Pharm Biomed Anal. 2019;167:149–54. https://doi.org/10.1016/j.jpba.2019.01.041.

Article  PubMed  CAS  Google Scholar 

Martinez AW, Recht NS, Hostetter TH, Meyer TW. Removal of p-cresol sulfate by hemodialysis. J Am Soc Nephrol. 2005;16(11):3430–6. https://doi.org/10.1681/asn.2005030310.

Article  PubMed  CAS  Google Scholar 

Pretorius CJ, McWhinney BC, Sipinkoski B, Johnson LA, Rossi M, Campbell KL, et al. Reference ranges and biological variation of free and total serum indoxyl- and p-cresyl sulphate measured with a rapid UPLC fluorescence detection method. Clin Chim Acta. 2013;419:122–6. https://doi.org/10.1016/j.cca.2013.02.008.

Article  PubMed  CAS  Google Scholar 

Wang ZP, Jiang H, Chen XJ, Song XH, Xu FJ, Chen FC, et al. A rapid and sensitive method for simultaneous determination of eight protein-bound uremic toxins in human serum by UHPLC-MS/MS: application in assessing peritoneal dialysis. J Pharm Biomed Anal. 2020;186: 113312. https://doi.org/10.1016/j.jpba.2020.113312.

Article  PubMed  CAS  Google Scholar 

Gu LQ, Shi HY, Zhang RW, Wei Z, Bi KS, Chen XH. Simultaneous determination of five specific and sensitive nephrotoxicity biomarkers in serum and urine samples of four drug-induced kidney injury models. J Chromatogr Sci. 2017;55(1):60–8. https://doi.org/10.1093/chromsci/bmw150.

Article  PubMed  CAS  Google Scholar 

Whiley L, Nye LC, Grant I, Andreas N, Chappell KE, Sarafian MH, et al. Ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionization quantification of tryptophan metabolites and markers of gut health in serum and plasma—application to clinical and epidemiology cohorts. Anal Chem. 2019;91(8):5207–16. https://doi.org/10.1021/acs.analchem.8b05884.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fagugli RM, De Smet R, Buoncristiani U, Lameire N, Vanholder R. Behavior of non-protein-bound and protein-bound uremic solutes during daily hemodialysis. Am J Kidney Dis. 2002;40(2):339–47. https://doi.org/10.1053/ajkd.2002.34518.

Article  PubMed  CAS  Google Scholar 

Meert N, Schepers E, Glorieux G, Van Landschoot M, Goeman JL, Waterloos MA, et al. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrol Dial Transplant. 2012;27(6):2388–96. https://doi.org/10.1093/ndt/gfr672.

Article  PubMed  CAS  Google Scholar 

Oda A, Suzuki Y, Sato B, Sato H, Tanaka R, Ono H, et al. Highly sensitive simultaneous quantification of indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid in human plasma using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci. 2022;45(10):1672–82. https://doi.org/10.1002/jssc.202100950.

Article  PubMed  CAS  Google Scholar 

Prokopienko AJ, West RE, Stubbs JR, Nolin TD. Development and validation of a UHPLC-MS/MS method for measurement of a gut-derived uremic toxin panel in human serum: an application in patients with kidney disease. J Pharm Biomed Anal. 2019;174:618–24. https://doi.org/10.1016/j.jpba.2019.06.033.

Article  PubMed  PubMed Central  CAS  Google Scholar 

de Loor H, Meijers BKI, Meyer TW, Bammens B, Verbeke K, Dehaen W, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A. 2009;1216(22):4684–8. https://doi.org/10.1016/j.chroma.2009.04.015.

Article  PubMed  CAS  Google Scholar 

De Smet R, David F, Sandra P, Van Kaer J, Lesaffer G, Dhondt A, et al. A sensitive HPLC method for the quantification of free and total p-cresol in patients with chronic renal failure. Clin Chim Acta. 1998;278(1):1–21. https://doi.org/10.1016/s0009-8981(98)00124-7.

Article  PubMed  Google Scholar 

Sun XD, Wu HL, Liu Z, Chen Y, Chen JC, Cheng L, et al. Target-based metabolomics for fast and sensitive quantification of eight small molecules in human urine using HPLC-DAD and chemometrics tools resolving of highly overlapping peaks. Talanta. 2019;201:174–84. https://doi.org/10.1016/j.talanta.2019.03.090.

Article  PubMed  CAS  Google Scholar 

Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—a prospective cohort study. Nephrol Dial Transplant. 2012;27(3):1169–75. https://doi.org/10.1093/ndt/gfr453.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif