Coupling of nitric acid digestion and anion-exchange resin separation for the determination of methylmercury isotopic composition within organisms

Selin NE. Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour. 2009;34:43–63.

Article  Google Scholar 

Regnell O, Watras CJ. Microbial mercury methylation in aquatic environments: a critical review of published field and laboratory studies. Environ Sci Technol. 2019;53:4–19.

Article  Google Scholar 

Barkay T, Gu B. Demethylation–the other side of the mercury methylation coin: a critical review. ACS Environ Au. 2022;2:77–97.

Article  Google Scholar 

Blum JD, Sherman LS, Johnson MW. Mercury isotopes in earth and environmental sciences. Annu Rev Earth Planet Sci. 2014;42:249–69.

Article  Google Scholar 

Stetson SJ, Gray JE, Wanty RB, Macalady DL. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury. Environ Sci Technol. 2009;43:7331–6.

Article  Google Scholar 

Wiederhold JG, Smith RS, Siebner H, Jew AD, Brown GE Jr, Bourdon B, et al. Mercury isotope signatures as tracers for Hg cycling at the New Idria Hg Mine. Environ Sci Technol. 2013;47:6137–45.

Article  Google Scholar 

Yin R, Feng X, Wang J, Bao Z, Yu B, Chen J. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China. Chem Geol. 2013;336:80–6.

Article  Google Scholar 

Wiederhold JG, Skyllberg U, Drott A, Jiskra M, Jonsson S, Björn E, et al. Mercury isotope signatures in contaminated sediments as a tracer for local industrial pollution sources. Environ Sci Technol. 2015;49:177–85.

Article  Google Scholar 

Brocza FM, Biester H, Richard J-H, Kraemer SM, Wiederhold JG. Mercury isotope fractionation in the subsurface of a Hg(II) chloride-contaminated industrial legacy site. Environ Sci Technol. 2019;53:7296–305.

Article  Google Scholar 

Grigg ARC, Kretzschmar R, Gilli RS, Wiederhold JG. Mercury isotope signatures of digests and sequential extracts from industrially contaminated soils and sediments. Sci Total Environ. 2018;636:1344–54.

Article  Google Scholar 

Crowther ER, Demers JD, Blum JD, Brooks SC, Johnson MW. Use of sequential extraction and mercury stable isotope analysis to assess remobilization of sediment-bound legacy mercury. Environ Sci: Process Impacts. 2021;23:756–75.

Google Scholar 

Huang S, Zhao Y, Lv S, Wang W, Wang W, Zhang Y, et al. Distribution of mercury isotope signatures in Yundang Lagoon, Xiamen, China, after long-term interventions. Chemosphere. 2021;272:129716.

McLagan DS, Schwab L, Wiederhold JG, Chen L, Pietrucha J, Kraemer SM, et al. Demystifying mercury geochemistry in contaminated soil-groundwater systems with complementary mercury stable isotope, concentration, and speciation analyses. Environ Sci: Process Impacts. 2022;24:1406–29.

Google Scholar 

Epov VN, Rodríguez-González P, Sonke JE, Tessier E, Amouroux D, Maurice Bourgoin L, et al. Simultaneous determination of species-specific isotopic composition of Hg by gas chromatography coupled to multicollector ICPMS. Anal Chem. 2008;80:3530–8.

Article  Google Scholar 

Masbou J, Point D, Sonke JE. Application of a selective extraction method for methylmercury compound specific stable isotope analysis (MeHg-CSIA) in biological materials. J Anal At Spectrom. 2013;28:1620–8.

Article  Google Scholar 

Janssen SE, Johnson MW, Blum JD, Barkay T, Reinfelder JR. Separation of monomethylmercury from estuarine sediments for mercury isotope analysis. Chem Geol. 2015;411:19–25.

Article  Google Scholar 

Li P, Du B, Maurice L, Laffont L, Lagane C, Point D, et al. Mercury isotope signatures of methylmercury in rice samples from the Wanshan mercury mining area, China: environmental implications. Environ Sci Technol. 2017;51:12321–8.

Article  Google Scholar 

Bouchet S, Bérail S, Amouroux D. Hg compound-specific isotope analysis at ultratrace levels using an on line gas chromatographic preconcentration and separation strategy coupled to multicollector-inductively coupled plasma mass spectrometry. Anal Chem. 2018;90:7809–16.

Article  Google Scholar 

Entwisle J, Malinovsky D, Dunn PJH, Goenaga-Infante H. Hg isotope ratio measurements of methylmercury in fish tissues using HPLC with off line cold vapour generation MC-ICPMS. J Anal At Spectrom. 2018;33:1645–54.

Article  Google Scholar 

Qin C, Chen M, Yan H, Shang L, Yao H, Li P, et al. Compound specific stable isotope determination of methylmercury in contaminated soil. Sci Total Environ. 2018;644:406–12.

Article  Google Scholar 

Qin C, Du B, Yin R, Meng B, Fu X, Li P, et al. Isotopic fractionation and source appointment of methylmercury and inorganic mercury in a paddy ecosystem. Environ Sci Technol. 2020;54:14334–42.

Article  Google Scholar 

Rosera TJ, Janssen SE, Tate MT, Lepak RF, Ogorek JM, DeWild JF, et al. Isolation of methylmercury using distillation and anion-exchange chromatography for isotopic analyses in natural matrices. Anal Bioanal Chem. 2020;412:681–90.

Article  Google Scholar 

Manceau A, Brossier R, Janssen SE, Rosera TJ, Krabbenhoft DP, Cherel Y, et al. Mercury isotope fractionation by internal demethylation and biomineralization reactions in seabirds: Implications for environmental mercury science. Environ Sci Technol. 2021;55:13942–52.

Article  Google Scholar 

Poulin BA, Janssen SE, Rosera TJ, Krabbenhoft DP, Eagles-Smith CA, Ackerman JT, et al. Isotope fractionation from in vivo methylmercury detoxification in waterbirds. ACS Earth Space Chem. 2021;5:990–7.

Article  Google Scholar 

Yang S, Wang B, Qin C, Yin R, Li P, Liu J, et al. Compound-specific stable isotope analysis provides new insights for tracking human monomethylmercury exposure sources. Environ Sci Technol. 2021;55:12493–503.

Article  Google Scholar 

Zhang W, Sun G, Yin R, Feng X, Yao Z, Fu X, et al. Separation of methylmercury from biological samples for stable isotopic analysis. J Anal At Spectrom. 2021;36:2415–22.

Article  Google Scholar 

Rosera TJ, Janssen SE, Tate MT, Lepak RF, Ogorek JM, DeWild JF, et al. Methylmercury stable isotopes: new insights on assessing aquatic food web bioaccumulation in legacy impacted regions. ACS EST Water. 2022;2:701–9.

Article  Google Scholar 

Tsui MTK, Blum JD, Kwon SY, Finlay JC, Balogh SJ, Nollet YH. Sources and transfers of methylmercury in adjacent river and forest food webs. Environ Sci Technol. 2012;46:10957–64.

Article  Google Scholar 

Kwon SY, Blum JD, Chen CY, Meattey DE, Mason RP. Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the northeastern U.S. Environ Sci Technol. 2014;48:10089–97.

Article  Google Scholar 

Kwon SY, Blum JD, Nadelhoffer KJ, Timothy Dvonch J, Tsui MT-K. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web. Sci Total Environ. 2015;532:220–9.

Article  Google Scholar 

Zhang L, Yin Y, Li Y, Cai Y. Mercury isotope fractionation during methylmercury transport and transformation: a review focusing on analytical method, fractionation characteristics, and its application. Sci Total Environ. 2022;841:156558.

Stoichev T, Rodríguez Martín-Doimeadios RC, Amouroux D, Molenat N, Donard OFX. Application of cryofocusing hydride generation and atomic fluorescence detection for dissolved mercury species determination in natural water samples. J Environ Monit. 2002;4:517–21.

Article  Google Scholar 

Magos L. Selective atomic-adsorption determination of inorganic mercury and methylmercury in undigested bioogical samples. Analyst. 1971;96:847–53.

Article  Google Scholar 

Gao Y, Liu R, Yang L. Application of chemical vapor generation in ICP-MS: a review. Chin Sci Bull. 2013;58:1980–91.

Article  Google Scholar 

Balarama Krishna MV, Karunasagar D. Robust ultrasound assisted extraction approach using dilute TMAH solutions for the speciation of mercury in fish and plant materials by cold vapor atomic absorption spectrometry (CVAAS). Anal Methods. 2015;7:1997–2005.

Article  Google Scholar 

Li D, Li Y, Wang X. Study on the simultaneous reduction of methylmercury by SnCl2 when analyzing inorganic Hg in aqueous samples. J Environ Sci (China). 2018;68:177–84.

Article  Google Scholar 

Krupp EM, Donard OFX. Isotope ratios on transient signals with GC-MC-ICP-MS. Int J Mass Spectrom. 2005;242:233–42.

Article  Google Scholar 

Dzurko M, Foucher D, Hintelmann H. Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS). Anal Bioanal Chem. 2009;393:345–55.

Article  Google Scholar 

Rodríguez-González P, Epov VN, Bridou R, Tessier E, Guyoneaud R, Monperrus M, et al. Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions. Environ Sci Technol. 2009;43:9183–8.

Article  Google Scholar 

Epov VN, Bérail S, Jiménez-Moreno M, Perrot V, Pecheyran C, Amouroux D, et al. Approach to measure isotopic ratios in species using multicollector-ICPMS coupled with chromatography. Anal Chem. 2010;82:5652–62.

Article  Google Scholar 

Yang L, Sturgeon RE. Isotopic fractionation of mercury induced by reduction and ethylation. Anal Bioanal Chem. 2009;393:377–85.

Article  Google Scholar 

Malinovsky D, Latruwe K, Moens L, Vanhaecke F. Experimental study of mass-independence of Hg isotope fractionation during photodecomposition of dissolved methylmercury. J Anal At Spectrom. 2010;25:950–6.

Article  Google Scholar 

Malinovsky D, Vanhaecke F. Mercury isotope fractionation during abiotic transmethylation reactions. Int J Mass Spectrom. 2011;307:214–24.

Article  Google Scholar 

Bloom NS, Colman JA, Barber L. Artifact formation of methyl mercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples. Fresenius J Anal Chem. 1997;358:371–7.

Article  Google Scholar 

Hintelmann H, Falter R, Ilgen G, Evans RD. Determination of artifactual formation of monomethylmercury (CH3Hg+) in environmental samples using stable Hg2+ isotopes with ICP-MS detection: calculation of contents applying species specific isotope addition. Fresenius J Anal Chem. 1997;358:363–70.

Article  Google Scholar 

Demers JD, Blum JD, Zak DR. Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem Cycles. 2013;27:222–38.

Article  Google Scholar 

U.S. EPA. Method 1631, Revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water; 2002. Report No.: EPA-821-R-02-019.

Hammerschmidt CR, Fitzgerald WF. Methylmercury in mosquitoes related to atmospheric mercury deposition and contamination. Environ Sci Technol. 2005;39:3034–9.

Article  Google Scholar 

Brooks Rand Instruments. Application note: nitric acid digestion of biological tissue for methylmercury analysis. 2013.

U.S. EPA. Method 1630, methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. Washington, D.C.: U.S. Environmental Protection Agency Office of Water; 2001. Report No.: EPA-821-R-01-020.

Korkisch J. Handbook of ion exchange resins: their application to inorganic analytical chemistry. Boca Raton: CRC Press; 1989.

Google Scholar 

Alderighi L, Gans P, Midollini S, Vacca A. Co-ordination chemistry of the methylmercury(II) ion in aqueous solution: a thermodynamic investigation. Inorg Chim Acta. 2003;356:8–18.

Article  Google Scholar 

Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Sjöberg S, et al. Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+– Cl–, OH–, CO32–, SO42–, and PO43– aqueous systems. Pure Appl Chem. 2009;77:739–800.

Article 

留言 (0)

沒有登入
gif