Impaired foot placement strategy during walking in people with incomplete spinal cord injury

Wirz M, van Hedel HJA. Balance, gait, and falls in spinal cord injury. Handb Clin Neurol. 3rd ed. Elsevier; 2018, 367–84.

van Hedel HJA. Gait speed in relation to categories of functional ambulation after spinal cord injury. Neurorehabil Neural Repair. 2009;23:343–50.

Article  PubMed  Google Scholar 

Brotherton SS, Krause JS, Nietert PJ. Falls in individuals with incomplete spinal cord injury. Spinal Cord. 2007;45:37–40.

Article  PubMed  CAS  Google Scholar 

Day KV, Kautz SA, Wu SS, Suter SP, Behrman AL. Foot placement variability as a walking balance mechanism post-spinal cord injury. Clin Biomech. 2012;27:145–50.

Article  Google Scholar 

Lemay JF, Duclos C, Nadeau S, Gagnon D, Desrosiers É. Postural and dynamic balance while walking in adults with incomplete spinal cord injury. J Electromyogr Kinesiol. 2014;24:739–46.

Article  PubMed  Google Scholar 

Cornwell T, Woodward J, Ochs W, Gordon KE. Stabilization strategies for fast walking in challenging environments with incomplete spinal cord injury. Front Rehab Sci. 2021;2:1–14.

Google Scholar 

Arora T, Musselman KE, Lanovaz JL, Linassi G, Arnold C, Milosavljevic S, et al. Reactive balance responses to an unexpected slip perturbation in individuals with incomplete spinal cord injury. Clin Biomech. 2020;78: 105099.

Article  Google Scholar 

Ochs WL, Woodward J, Cornwell T, Gordon KE. Meaningful measurements of maneuvers: people with incomplete spinal cord injury ‘step up’ to the challenges of altered stability requirements. J Neuroeng Rehabil. 2021;18:1–13.

Article  Google Scholar 

Matsubara JH, Wu M, Gordon KE. Metabolic cost of lateral stabilization during walking in people with incomplete spinal cord injury. Gait Posture. 2015;41:646–51.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reimann H, Fettrow TD, Thompson ED, Agada P, McFadyen BJ, Jeka JJ. Complementary mechanisms for upright balance during walking. PLoS ONE. 2017;12:1–16.

Article  Google Scholar 

Reimann H, Fettrow T, Jeka JJ. Strategies for the control of balance during locomotion. Kinesiol Rev. 2018;7:18–25.

Article  Google Scholar 

Blenkinsop GM, Pain MTG, Hiley MJ. Balance control strategies during perturbed and unperturbed balance in standing and handstand. R Soc Open Sci. 2017;4:1–12.

Article  Google Scholar 

Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3:193–214.

Article  Google Scholar 

Bruijn SM, van Dieën JH. Control of human gait stability through foot placement. J R Soc Interface. 2018;15:1–11.

Article  Google Scholar 

Hof AL. The “extrapolated center of mass” concept suggests a simple control of balance in walking. Hum Mov Sci. 2008;27:112–25.

Article  PubMed  Google Scholar 

Hof AL, Vermerris SM, Gjaltema WA. Balance responses to lateral perturbations in human treadmill walking. J Exp Biol. 2010;213:2655–64.

Article  PubMed  CAS  Google Scholar 

Hof AL, van Bockel RM, Schoppen T, Postema K. Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees. Gait Posture. 2007;25:250–8.

Article  PubMed  Google Scholar 

Vlutters M, van Asseldonk EHF, van der Kooij H. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. J Exp Biol. 2016;219:1514–23.

PubMed  CAS  Google Scholar 

Wang Y, Srinivasan M. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking. Biol Lett. 2014;10:1–5.

Article  Google Scholar 

Rankin BL, Buffo SK, Dean JC. A neuromechanical strategy for mediolateral foot placement in walking humans. J Neurophysiol. 2014;112:374–83.

Article  PubMed  PubMed Central  Google Scholar 

Sloot LH, van der Krogt MM, Harlaar J. Self-paced versus fixed speed treadmill walking. Gait Posture. 2014;39:478–84.

Article  PubMed  CAS  Google Scholar 

Theunissen K, van Hooren B, Plasqui G, Meijer K. Self-paced and fixed speed treadmill walking yield similar energetics and biomechanics across different speeds. Gait Posture. 2022;92:2–7.

Article  PubMed  Google Scholar 

Lapointe R, Lajoie Y, Serresse O, Barbeau H. Functional community ambulation requirements in incomplete spinal cord injured subjects. Spinal Cord. 2001;39:327–35.

Article  PubMed  CAS  Google Scholar 

Camargo J, Ramanathan A, Csomay-Shanklin N, Young A. Automated gap-filling for marker-based biomechanical motion capture data. Comput Methods Biomech Biomed Engin. 2020;23:1180–9.

Article  PubMed  Google Scholar 

Dumas R, Chèze L, Verriest JP. Adjustments to McConville et al. and Young et al. body segment inertial parameters. J Biomech. 2007;40:543–53.

Article  PubMed  CAS  Google Scholar 

Tisserand R, Robert T, Dumas R, Chèze L. A simplified marker set to define the center of mass for stability analysis in dynamic situations. Gait Posture. 2016;48:64–7.

Article  PubMed  CAS  Google Scholar 

Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27:710–4.

Article  PubMed  Google Scholar 

Mahaki M, Bruijn SM, van Dieën JH. The effect of external lateral stabilization on the use of foot placement to control mediolateral stability in walking and running. PeerJ. 2019;7(e7939):1–15.

Google Scholar 

Hoogstad LA, van Leeuwen AM, van Dieën JH, Bruijn SM. Can foot placement during gait be trained? Adaptations in stability control when ankle moments are constrained. J Biomech. 2022;134:1–7.

Article  Google Scholar 

van Leeuwen AM, van Dieën JH, Daffertshofer A, Bruijn SM. Active foot placement control ensures stable gait: effect of constraints on foot placement and ankle moments. PLoS ONE. 2020;15:1–19.

Google Scholar 

Cohen J. Multiple regression and correlation analysis. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Lawrence Erlbaum Associates; 1988, 407–65.

van Vugt Y, Stinear J, Claire Davies T, Zhang Y. Postural stability during gait for adults with hereditary spastic paraparesis. J Biomech. 2019;88:12–7.

Article  PubMed  Google Scholar 

Hak L, Houdijk H, van der Wurff P, Prins MR, Mert A, Beek PJ, et al. Stepping strategies used by post-stroke individuals to maintain margins of stability during walking. Clin Biomech. 2013;28:1041–8.

Article  Google Scholar 

Perry JA, Srinivasan M. Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability. R Soc Open Sci. 2017;4:1–9.

Article  Google Scholar 

Roden-Reynolds DC, Walker MH, Wasserman CR, Dean JC. Hip proprioceptive feedback influences the control of mediolateral stability during human walking. J Neurophysiol. 2015;114:2220–9.

Article  PubMed  PubMed Central  Google Scholar 

Dean JC, Embry AE, Stimpson KH, Perry LA, Kautz SA. Effects of hip abduction and adduction accuracy on post-stroke gait. Clin Biomech. 2017;44:14–20.

Article  Google Scholar 

Unger J, Chan K, Lee JW, Craven BC, Mansfield A, Alavinia M, et al. The effect of perturbation-based balance training and conventional intensive balance training on reactive stepping ability in individuals with incomplete spinal cord injury or disease: a randomized clinical trial. Front Neurol. 2021;12:1–13.

Article  Google Scholar 

van Dijsseldonk RB, de Jong LAF, Groen BE, van der Hulst MV, Geurts ACH, Keijsers NLW. Gait stability training in a virtual environment improves gait and dynamic balance capacity in incomplete spinal cord injury patients. Front Neurol. 2018;9:1–12.

Google Scholar 

Hak L, Houdijk H, Steenbrink F, Mert A, van der Wurff P, Beek PJ, et al. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture. 2012;36:260–4.

Article  PubMed  Google Scholar 

Onushko T, Boerger T, van Dehy J, Schmit BD. Dynamic stability and stepping strategies of young healthy adults walking on an oscillating treadmill. PLoS ONE. 2019;14:1–12.

Article  Google Scholar 

Stimpson KH, Heitkamp LN, Horne JS, Dean JC. Effects of walking speed on the step-by-step control of step width. J Biomech. 2018;68:78–83.

Article  PubMed  Google Scholar 

Wu AR, Simpson CS, van Asseldonk EHF, van der Kooij H, Ijspeert AJ. Mechanics of very slow human walking. Sci Rep. 2019;9:1–10.

Article  Google Scholar 

Toda M, Nakatani E, Omae K, Fukushima M, Chin T. Age-specific characterization of spinal cord injuries over a 19-year period at a Japanese rehabilitation center. PLoS ONE. 2018;13:e095120.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif