EANM practice guideline for quantitative SPECT-CT

Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med. 2013;54(1):83–9.

Article  PubMed  Google Scholar 

Capoccetti F, Biggi E, Rossi G, Manni C, Brianzoni E. Differentiated thyroid carcinoma: diagnosis and dosimetry using 124I PET/CT. Clin Transl Imaging. 2013;1(3):185–93.

Article  Google Scholar 

Liu T, Karlsen M, Karlberg AM, Redalen KR. Hypoxia imaging and theranostic potential of [64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res. 2020;10(1):33.

Article  PubMed  PubMed Central  Google Scholar 

Blaire T, Bailliez A, Ben Bouallegue F, Bellevre D, Agostini D, Manrique A. First assessment of simultaneous dual isotope (123I/99mTc) cardiac SPECT on two different CZT cameras: a phantom study. J Nucl Cardiol. 2018;25(5):1692–704.

Article  PubMed  Google Scholar 

Dewaraja YK, et al. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med. 2013;54(12):2182–8.

Article  CAS  PubMed  Google Scholar 

Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD pamphlet no. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57(1):151–62.

Article  CAS  PubMed  Google Scholar 

Brady SL, and Shulkin BL. Analysis of quantitative [I-123] mIBG SPECT/CT in a phantom and in patients with neuroblastoma. EJNMMI Phys. 2019;6(1):31

Dittmann H et al. The prognostic value of quantitative bone scan SPECT/CT prior to 223 Ra treatment in metastatic castration-resistant prostate cancer. J Nucl Med. 2021;62(1):48–54.

De Laroche R, et al. Clinical interest of quantitative bone SPECT-CT in the preoperative assessment of knee osteoarthritis. Medicine (Baltimore). 2018;97(35):e11943.

Article  PubMed  Google Scholar 

Jreige M et al. A novel assessment of Tc-99m-diphosphonate bone scan quantification in fibrous dysplasia using a combined planar and SPECT/CT analysis. J Nucl Med. 2021;62(supplement 1):1164

Umeda T, et al. Evaluation of bone metastatic burden by bone SPECT/CT in metastatic prostate cancer patients: defining threshold value for total bone uptake and assessment in radium-223 treated patients. Ann Nucl Med. 2018;32(2):105–13.

Article  CAS  PubMed  Google Scholar 

Van De Burgt A et al. Experimental validation of absolute SPECT/ CT quantification for response monitoring in patients with coronary artery disease. EJNMMI Phys. 2021;8(1):48

Toriihara A, et al. Semiquantitative analysis using standardized uptake value in 123I-FP-CIT SPECT/CT. Clin Imaging. 2018;52:57–61.

Article  PubMed  Google Scholar 

Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(SUPPL. 1):122–50.

Article  Google Scholar 

Sher A, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [18F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):4–9.

Article  Google Scholar 

Kaalep A, et al. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging. 2018;43(Suppl 1):189.

Google Scholar 

American Association of Physics in Medicine. The selection, use, calibration, and quality assurance of radionuclide calibrators used in nuclear medicine. Report of AAPM task group 181. Maryland 2012. https://doi.org/10.37206/137.

International Atomic Energy Agency. Tech Report Series no. 454. Quality assurance for radioactivity measurement in nuclear medicine. Vienna 2006. Available online at https://www.iaea.org/publications/7480/quality-assurance-for-radioactivity-measurement-in-nuclear-medicine. Accessed 5 Oct 2022.

Lassmann M, Eberlein U, Tran-Gia J. Multicentre trials on standardised quantitative imaging and dosimetry for radionuclide therapies. Clin Oncol. 2021;33(2):125–30.

Article  CAS  Google Scholar 

Saldarriaga Vargas C et al. An international multi-center investigation on the accuracy of radionuclide calibrators in nuclear medicine theragnostics, EJNMMI Phys. 2020;7(1):69

Busemann Sokole E, Płachcínska A, Britten A. Acceptance testing for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;3:672–81.

Article  Google Scholar 

Gadd R et al. Protocol for establishing and maintaining the calibration of medical radionuclide calibrators and their quality control. Measurement good practice guide No.93. National Physical Laboratory, Teddington 2006. Available online at: https://eprintspublications.npl.co.uk/3661/. Accessed 5 Oct 2022.

Dewaraja YK, et al. MIRD pamphlet no. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J of Nucl Med. 2012;53(8):310–1325.

Article  Google Scholar 

Tran-Gia J et al. A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Phys. 2021;8(1):55

Kaalep A et al. Quantitative implications of the updated EARL 2019 PET–CT performance standards. EJNMMI Phys. 2019;6(1):28

Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH. Quantitative potentials of dynamic emission computed tomography. J Nucl Med. 1978;19(3):309–15.

CAS  PubMed  Google Scholar 

Dickson JC, et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging. 2010;37(1):23–35.

Article  PubMed  Google Scholar 

Armstrong IS. Spatial dependence of activity concentration recovery for a conjugate gradient (Siemens xSPECT) algorithm using manufacturer-defined reconstruction presets. Nucl Med Commun. 2019;40(3):287–93.

Article  PubMed  Google Scholar 

Blankespoor SC, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci. 1996;43(4):2263–74.

Article  Google Scholar 

Abdoli M, Dierckx RAJO, Zaidi H. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging. Med Phys. 2012;39(6):3343–60.

Article  PubMed  Google Scholar 

Konishi T, et al. Metal artifact reduction for improving quantitative SPECT/CT imaging. Ann Nucl Med. 2021;35(3):291–8.

Article  CAS  PubMed  Google Scholar 

Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol. 2011;56(14):R85-112.

Article  PubMed  Google Scholar 

Liu S, and Farncombe TH. Collimator-detector response compensation in quantitative SPECT reconstruction. 2007 IEEE Nuclear Science Symposium Conference Record 5 2007:3955–60.

Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39(5):904–11.

CAS  PubMed  Google Scholar 

The European Parliament and the Council of the European Union, Regulation (EU) 2017/ 745 of the European Parliament and of the council - of 5 April 2017 - on medical devices, amending Directive 2001/ 83/ EC, Regulation (EC) No 178/ 2002 and Regulation (EC) No 1223/ 2009 and repealing Council Directives 90/ 385/ EEC and 93/ 42/ EEC. 2017. Available online at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745. Accessed 5 Oct 2022.

Buckley SE et al. Dosimetry for fractionated 131 I-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results, CANCER Biother. Radiopharm. 2007;22(1):105–12.

Desy A, Bouvet GF, Frezza A, Després P, and Beauregard J-M. Impact of dead time on quantitative 177 Lu-SPECT (QSPECT) and kidney dosimetry during PRRT. EJNMMI Phys. 2020;7(1):32.

Gear J, Chiesa C, Lassmann M, Gabiña PM, Tran-Gia J, and Stokke C. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131 I mIBG treatment of neuroendocrine tumours Glenn Flux 1 and In collaboration with the EANM Dosimetry Committee, EJNMMI Phys. 2020;7(1):15

Busemann Sokole E, Płachcínska A, Britten A, Lyra Georgosopoulou M, Tindale W, Klett R. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37(3):662–71.

Article  PubMed  Google Scholar 

Tatsch K. Standardisation and harmonisation boost the credibility of nuclear medicine procedures. Eur J Nucl Med Mol Imaging. 2012;39(1):186–7.

Article  PubMed  Google Scholar 

Zimmerman BE, Judge S. Traceability in nuclear medicine. Metrologia. 2007;44(4):S127–32.

Article  Google Scholar 

BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, OIML The international vocabulary of metrology—basic and general concepts and associated terms (VIM) 2012, 3rd edn. JCGM 200:2012 Available online at http://www.bipm.org/vim. Accessed 5 Oct 2022.

Kaalep A, et al. EANM/EARL FDG-PET/CT accreditation—summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging. 2018;45(3):412–22.

Article  CAS  PubMed  Google Scholar 

Hughes T, Celler A. A multivendor phantom study comparing the image quality produced from three state-of-the-art SPECT-CT systems. Nucl Med Commun. 2012;33(6):663–70.

Article  PubMed  Google Scholar 

Nakahara T, et al. Use of a digital phantom developed by QIBA for harmonizing SUVs obtained from the state-of-the-art SPECT/CT systems: a multicenter study. EJNMMI Res. 2017;7(1):53.

Article  PubMed  PubMed Central  Google Scholar 

Renaud JM et al. Site qualification and clinical interpretation standards for 99mTc-SPECT perfusion imaging in a multi-center study of MITNEC (Medical Imaging Trials Network of Canada). J Nucl Cardiol. 2021;28(6):2712–25.

Peters SMB et al. Towards standardization of absolute SPECT/CT quantification: a multi-center and multi-vendor phantom study. EJNMMI Phys. 2019;6(1):29

Dickson JC, et al. Proposal for the standardisation of multi-centre trials in nuclear medicine imaging: prerequisites for a European 123I-FP-CIT SPECT database. Eur J Nucl Med Mol Imaging. 2011;39(1):188–97.

Article  Google Scholar 

Gregory RA, et al. Standardised quantitative radioiodine SPECT/CT Imaging for multicentre dosimetry trials in molecular radiotherapy. Phys Med Biol. 2019;64(24):245013.

Article  CAS  PubMed  Google Scholar 

Taprogge J et al. Setting up a quantitative SPECT imaging network for a European multi-centre dosimetry study of radioiodine treatment for thyroid cancer as part of the MEDIRAD project. EJNMMI Phys. 2020;7(1):61.

Zimmerman BE, et al. Multizentrische Evaluierung der Genauigkeit und Präzision bei der Quantifizierung planarer Bildgebung und SPECT: Eine Phantomstudie der IAEA. Z Med Phys. 2017;27(2):98–112.

Article  PubMed  Google Scholar 

Peters SMB et al. Variability in lutetium-177 SPECT quantification between different state-of-the-art SPECT/CT systems. EJNMMI Phys. 2020;7(1):9.

Wevrett J, Fenwick A, Scuffham J, Nisbet A. Development of a calibration protocol for quantitative imaging for molecular radiotherapy dosimetry. Radiat Phys Chem. 2017;140(February):355–60.

Article  CAS  Google Scholar 

Pacilio M, et al. The Italian multicentre dosimetric study for lesion dosimetry in 223Ra therapy of bone metastases: calibration protocol of gamma cameras and patient eligibility criteria. Phys Medica. 2016;32(12):1731–7.

Article  Google Scholar 

Taprogge J, Wadsley J, Miles E, Flux GD. Recommendations for multicentre clinical trials involving dosimetry for molecular radiotherapy. Clin Oncol. 2021;33(2):131–6.

Article  CAS  Google Scholar 

Gear JI, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging. 2018;45(13):2456–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spick C, Herrmann K, Czernin J. 18 F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients. J Nucl Med. 2016;57:420–30.

Article  CAS  PubMed  Google Scholar 

Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60(9):13S-19S.

留言 (0)

沒有登入
gif