Minimum protamine dose required to neutralize heparin in cardiac surgery: a single-centre, prospective, observational cohort study

Koch CG, Li L, Duncan AI, et al. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann Thorac Surg 2006; 81: 1650–7. https://doi.org/10.1016/j.athoracsur.2005.12.037

Article  Google Scholar 

Munoz JJ, Birkmeyer NJ, Dacey LJ, et al. Trends in rates of reexploration for hemorrhage after coronary artery bypass surgery. Northern New England Cardiovascular Disease Study Group. Ann Thorac Surg 1999; 68: 1321–5. https://doi.org/10.1016/s0003-4975(99)00728-6

Paparella D, Brister SJ, Buchanan MR. Coagulation disorders of cardiopulmonary bypass: a review. Intensive Care Med 2004; 30: 1873–81. https://doi.org/10.1007/s00134-004-2388-0

Article  Google Scholar 

Raphael J, Mazer CD, Subramani S, et al. Society of Cardiovascular Anesthesiologists clinical practice improvement advisory for management of perioperative bleeding and hemostasis in cardiac surgery patients. J Cardiothorac Vasc Anesth 2019; 33: 2887–99. https://doi.org/10.1053/j.jvca.2019.04.003

Article  Google Scholar 

Boer C, Meesters MI, Veerhoek D, Vonk AB. Anticoagulant and side-effects of protamine in cardiac surgery: a narrative review. Br J Anaesth 2018; 120: 914–27. https://doi.org/10.1016/j.bja.2018.01.023

Article  Google Scholar 

Goedhart AL, Gerritse BM, Rettig TC, et al. A 0.6-protamine/heparin ratio in cardiac surgery is associated with decreased transfusion of blood products. Interact Cardiovasc Thorac Surg 2020; 31: 391–7. https://doi.org/10.1093/icvts/ivaa109

Shore-Lesserson L, Baker RA, Ferraris V, et al. STS/SCA/AmSECT clinical practice guidelines: anticoagulation during cardiopulmonary bypass. J Extra Corpor Technol 2018; 50: 5–18.

Google Scholar 

Pagano D, Milojevic M, Meesters MI, et al. 2017 EACTS/EACTA guidelines on patient blood management for adult cardiac surgery. Eur J Cardiothorac Surg 2018; 53: 79–111. https://doi.org/10.1093/ejcts/ezx325

Article  Google Scholar 

Puis L, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Interact Cardiovasc Thorac Surg 2020; 30: 161–202. https://doi.org/10.1093/icvts/ivz251

Article  Google Scholar 

Olsson A, Alfredsson J, Thelander M, Svedjeholm R, Berglund JS, Berg S. Activated platelet aggregation is transiently impaired also by a reduced dose of protamine. Scand Cardiovasc J 2019; 53: 355–60. https://doi.org/10.1080/14017431.2019.1659396

Article  Google Scholar 

U.S. Pharmacopeial Convention. USP statement on heparin potency unit assignment and harmonization with the International Standard for unfractionated heparin. Available from URL: https://www.usp.org/sites/default/files/usp/document/our-work/reference-standards/03_statement_on_heparin_potency_unit_assignment_and_harmonization_rs_2014.pdf (accessed August 2022).

Shore-Lesserson L, Malayaman SN, Horrow JC GG. Coagulation management during and after cardiopulmonary bypass. In: Hensley Jr FA, Martin DE, Gravlee GP (Eds.). A Practical Approach to Cardiac Anesthesia, 4th ed. Philadelphia: Wolters Kluwer /Lippincott Williams & Wilkins; 2008: 494–515.

Google Scholar 

Maslow A, Chambers A, Cheves T, Sweeney J. Assessment of heparin anticoagulation measured using i-STAT and hemochron activated clotting time. J Cardiothorac Vasc Anesth 2018; 32: 1603–8. https://doi.org/10.1053/j.jvca.2018.01.027

Article  Google Scholar 

Smythe MA, Koerber JM. Heparin monitoring: the confusion continues. Pharmacotherapy 1999; 19: 1240–2. https://doi.org/10.1592/phco.19.16.1240.30881

Article  Google Scholar 

Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: part 1--correlation within subjects. BMJ 1995; 310: 446. https://doi.org/10.1136/bmj.310.6977.446

Article  Google Scholar 

Ortmann E, Klein AA, Sharples LD, et al. Point-of-care assessment of hypothermia and protamine-induced platelet dysfunction with multiple electrode aggregometry (Multiplate®) in patients undergoing cardiopulmonary bypass. Anesth Analg 2013; 116: 533–40. https://doi.org/10.1213/ANE.0b013e31827cee88

Article  Google Scholar 

Nielsen VG, Malayaman SN. Protamine sulfate: crouching clot or hidden hemorrhage? Anesth Analg 2010; 111: 593–4. https://doi.org/10.1213/ane.0b013e3181eb6388

Article  Google Scholar 

Meesters MI, Veerhoek D, de Lange F, et al. Effect of high or low protamine dosing on postoperative bleeding following heparin anticoagulation in cardiac surgery. A randomised clinical trial. Thromb Haemost 2016; 116: 251–61. https://doi.org/10.1160/TH16-02-0117

Article  Google Scholar 

Butterworth J, Lin YA, Prielipp R, Bennett J, James R. The pharmacokinetics and cardiovascular effects of a single intravenous dose of protamine in normal volunteers. Anesth Analg 2002; 94: 514–22. https://doi.org/10.1097/00000539-200203000-00008

Article  Google Scholar 

Mittermayr M, Velik-Salchner C, Stalzer B, et al. Detection of protamine and heparin after termination of cardiopulmonary bypass by thrombelastometry (ROTEM): results of a pilot study. Anesth Analg 2009; 108: 743–50. https://doi.org/10.1213/ane.0b013e31818657a3

Article  Google Scholar 

Nielsen VG. Protamine enhances fibrinolysis by decreasing clot strength: role of tissue factor-initiated thrombin generation. Ann Thorac Surg 2006; 81: 1720–7. https://doi.org/10.1016/j.athoracsur.2005.12.027

Article  Google Scholar 

Butterworth J, Lin YA, Prielipp RC, Bennett J, Hammon JW, James RL. Rapid disappearance of protamine in adults undergoing cardiac operation with cardiopulmonary bypass. Ann Thorac Surg 2002; 74: 1589–95. https://doi.org/10.1016/s0003-4975(02)04016-x

Article  Google Scholar 

Ni Ainle F, Preston RJ, Jenkins PV, et al. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation. Blood 2009; 114: 1658–65. https://doi.org/10.1182/blood-2009-05-222109

Article  Google Scholar 

Despotis GJ, Filos KS, Zoys TN, Hogue CW Jr, Spitznagel E, Lappas DG. Factors associated with excessive postoperative blood loss and hemostatic transfusion requirements: a multivariate analysis in cardiac surgical patients. Anesth Analg 1996; 82: 13–21. https://doi.org/10.1097/00000539-199601000-00004

Article  Google Scholar 

Hoenicka M, Rupp P, Müller-Eising K, et al. Anticoagulation management during multivessel coronary artery bypass grafting: a randomized trial comparing individualized heparin management and conventional hemostasis management. J Thromb Haemost 2015; 13: 1196–206. https://doi.org/10.1111/jth.12999

Article  Google Scholar 

Koster A, Börgermann J, Gummert J, et al. Protamine overdose and its impact on coagulation, bleeding, and transfusions after cardiopulmonary bypass: results of a randomized double-blind controlled pilot study. Clin Appl Thromb Hemost 2014; 20: 290–5. https://doi.org/10.1177/1076029613484085

Article  Google Scholar 

Miles LF, Burt C, Arrowsmith J, et al. Optimal protamine dosing after cardiopulmonary bypass: the PRODOSE adaptive randomised controlled trial. PLoS Med 2021; 18: e1003658. https://doi.org/10.1371/journal.pmed.1003658

Article  Google Scholar 

Kjellberg G, Holm M, Fux T, Lindvall G, van der Linden J. Calculation algorithm reduces protamine doses without increasing blood loss or the transfusion rate in cardiac surgery: results of a randomized controlled trial. J Cardiothorac Vasc Anesth 2019; 33: 985–92. https://doi.org/10.1053/j.jvca.2018.07.044

Article  Google Scholar 

Teoh KH, Young E, Bradley CA, Hirsh J. Heparin binding proteins. Contribution to heparin rebound after cardiopulmonary bypass. Circulation 1993; 88: 420–5

De Paulis R, Mohammad SF, Chiariello L, Morea M, Olsen DB. The role of plasma proteins in formation of obstructive protamine complexes. J Cardiothorac Vasc Anesth 1991; 5: 227–33. https://doi.org/10.1016/1053-0770(91)90279-3

Article  Google Scholar 

Sniecinski RM, Bennett-Guerrero E, Shore-Lesserson L. Anticoagulation management and heparin resistance during cardiopulmonary bypass: a survey of Society of Cardiovascular Anesthesiologists members. Anesth Analg 2019; 129: e41–4. https://doi.org/10.1213/ANE.0000000000003981

Article  Google Scholar 

Metz S, Horrow J. Pharmmacologic manipulation of coagulation: protamine and other heparin antagonists. In: Lake CL, Moore RA (Eds.). Blood, Hemostasis Transfusion and Alternatives in the Perioperative Period. New York: Raven Press; 1995: 119–30.

Google Scholar 

Spiess B, Horrow J, Kaplan J. Transfusion medicine and coagulation disorders. In: Kaplan JA, Reich DL, Savino JS (Eds.). Kaplan’s Cardiac Anesthesia: The Echo Era, 6th ed. Philadelphia: Elsevier; 2011: 959–61.

Google Scholar 

Jerrold L. Anticoagulants. In: Flood P, Rathmell JP, Shafer SL (Eds.). Stoelting’s Pharmacology & Physiology in Anesthetic Practice, 5th ed. Wolters Kluwer Health, Philadelphia: Wolters Kluwer; 2015: 648–60.

Stanley III T, Reves J. Cardiovascular monitoring. In: Miller RD (Ed.). Anesthesia, 3rd ed. New York: Churchill Livingstone Inc.; 1990: 1031–100.

Google Scholar 

Best CH. Preparation of heparin and its use in the first clinical cases. Circulation 1959; 19: 79–86. https://doi.org/10.1161/01.CIR.19.1.79

Article  Google Scholar 

Jaques LB. Protamine--antagonist to heparin. Can Med Assoc J 1973; 108: 1291–7.

Google Scholar 

Bangham D, Mussett M (1959) The Second International Standard for heparin. Bull World Health Organ 20:1201–1208

Google Scholar 

National Institute of Health Services. Interim revision announcement: change to read: heparin sodium. Pharmacopeial Forum 2009; 35: 1–4.

Google Scholar 

Berger RL, Ramaswamy K, Ryan TJ. Reduced protamine dosage for heparin neutralization in open-heart operations. Circulation 1968; 37: 154–7. https://doi.org/10.1161/01.CIR.37.4S2.II-154

Article  Google Scholar 

Hogwood J, Mulloy B, Gray E. Precipitation and neutralization of heparin from different sources by protamine sulfate. Pharmaceuticals (Basel) 2017; 10: 59. https://doi.org/10.3390/ph10030059

Article  Google Scholar 

Hardy JF, Bélisle S, Robitaille D, Perrault J, Roy M, Gagnon L. Measurement of heparin concentration in whole blood with the Hepcon/HMS device does not agree with laboratory determination of plasma heparin concentration using a chromogenic substrate for activated factor X. J Thorac Cardiovasc Surg 1996; 112: 154–61. https://doi.org/10.1016/s0022-5223(96)70191-5

Article  Google Scholar 

留言 (0)

沒有登入
gif