Repurposing artemisinins as neuroprotective agents: a focus on the PI3k/Akt signalling pathway

Abdel Rasheed NO, Ibrahim WW (2022) Telmisartan neuroprotective effects in 3-nitropropionic acid Huntington’s disease model in rats: cross talk between PPAR-γ and PI3K/Akt/GSK-3β pathway. Life Sci 297:120480. https://doi.org/10.1016/j.lfs.2022.120480

Article  PubMed  CAS  Google Scholar 

Armada-moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-ribeiro J, Rei N, Pinto S, Crunelli V, Vaz SH (2020) Going the extra (synaptic ) mile : excitotoxicity as the road toward neurodegenerative diseases. 14(April):1–27. https://doi.org/10.3389/fncel.2020.00090

Armstrong R (2020) What causes neurodegenerative disease? Folia Neuropathol 58(2):93–112. https://doi.org/10.5114/FN.2020.96707

Article  PubMed  Google Scholar 

Bai X, Pei R, Lei W, Zhao M, Zhang J, Tian L, Shang J (2020) Antidiabetic effect of artemether in Db/Db mice involves regulation of AMPK and PI3K/Akt pathways. Front Endocrinol 11(September):1–9. https://doi.org/10.3389/fendo.2020.568864

Article  CAS  Google Scholar 

Binh TQ, Ilett KF, Batty KT, Davis TME, Hung NC, Powell SM, Thu LTA, Van Thien H, Phuöng HL, Phuong VDB (2001) Oral bioavailability of dihydroartemisinin in Vietnamese volunteers and in patients with Falciparum malaria. Br J Clin Pharmacol 51(6):541–546. https://doi.org/10.1046/j.1365-2125.2001.01395.x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bonelli RM, Wenning GK, Kapfhammer HP (2004) Huntington’s disease: present treatments and future therapeutic modalities. Int Clin Psychopharmacol 19(2):51–62. https://doi.org/10.1097/00004850-200403000-00001

Article  PubMed  Google Scholar 

Borstnik K, Paik I, Posner G (2005) Malaria: new chemotherapeutic peroxide drugs. Mini-Rev Med Chem 2(6):573–583. https://doi.org/10.2174/1389557023405620

Article  Google Scholar 

Chen S, Wu L, He B, Zhou G, Xu Y, Zhu G, Xie J, Chen S (2021) Artemisinin facilitates motor function recovery by enhancing motoneuronal survival and axonal remyelination in rats following brachial plexus root avulsion.https://doi.org/10.1021/acschemneuro.1c00120

De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. pp 329–352. https://doi.org/10.1007/978-94-007-5416-4_14

Dobson R, Giovannoni G (2019) Multiple sclerosis – a review. Eur J Neurol 26(1):27–40. https://doi.org/10.1111/ene.13819

Article  PubMed  CAS  Google Scholar 

Fan S, Zhang D, Liu F, Yang Y, Xu H (2020) Artesunate alleviates myocardial ischemia/reperfusion-induced myocardial necrosis in rats and hypoxia/reoxygenation-induced apoptosis in H9C2 cells via regulating the FAK/PI3K/Akt pathway. Ann Translat Med 8(20):1291–1291. https://doi.org/10.21037/atm-20-5182

Article  CAS  Google Scholar 

Gao Y, Cui M, Zhong S, Feng C, Nwobodo AK, Chen B, Song Y, Wang Y (2020) Dihydroartemisinin ameliorates LPS-induced neuroinflammation by inhibiting the PI3K / AKT pathway. :661–672

Gautam A, Ahmed T, Paliwal J, Batra V (2009) Pharmacokinetics and Pharmacodynamics of endoperoxide antimalarials. Curr Drug Metab 10(3):289–306. https://doi.org/10.2174/138920009787846323

Article  PubMed  CAS  Google Scholar 

Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 28(1):3–13. https://doi.org/10.1111/bpa.12545

Article  PubMed  CAS  Google Scholar 

Hauser SL, Cree BAC (2020) Treatment of multiple sclerosis : a review. Am J Med. https://doi.org/10.1016/j.amjmed.2020.05.049

Article  PubMed  PubMed Central  Google Scholar 

Hemmings BA, Restuccia DF (2012) PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Med 4(9):1–4

Google Scholar 

Ho WE, Peh HY, Chan TK, Wong WSF (2014) Artemisinins: pharmacological actions beyond anti-malarial. Pharmacol Ther 142(1):126–139. https://doi.org/10.1016/j.pharmthera.2013.12.001

Article  PubMed  CAS  Google Scholar 

Illarioshkin SN, Klyushnikov SA, Vigont VA, Seliverstov YA, Kaznacheyeva EV (2018) Molecular pathogenesis in Huntington’s disease. Biochemistry (moscow) 83(9):1030–1039. https://doi.org/10.1134/S0006297918090043

Article  PubMed  CAS  Google Scholar 

Jabbarzadeh P, Salimian F, Aghapour S, Xiang S (2020) Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer – a comprehensive review from chemotherapy to immunotherapy. 156(April). https://doi.org/10.1016/j.phrs.2020.104806

Jamwal S, Singh S, Kaur N, Kumar P (2015) Protective effect of spermidine against excitotoxic neuronal death induced by quinolinic acid in rats: possible neurotransmitters and neuroinflammatory mechanism. Neurotox Res 28(2):171–184. https://doi.org/10.1007/s12640-015-9535-y

Article  PubMed  CAS  Google Scholar 

Jean S, Kiger AA (2014) Classes of phosphoinositide 3-kinases at a glance. :923–928. https://doi.org/10.1242/jcs.093773

Ji Y, Wang D, Zhang B, Lu H (2019) Bergenin ameliorates MPTP-induced Parkinson’s disease by activating PI3K/Akt signaling pathway. J Alzheim Dis. https://doi.org/10.3233/JAD-190870

Article  Google Scholar 

Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. 24(4):325–340.https://doi.org/10.5607/en.2015.24.4.325

Kiss E, Kins S, Zöller Y, Schilling S, Gorgas K, Groß D, Schlicksupp A, Rosner R, Kirsch J, Kuhse J (2021) Artesunate restores the levels of inhibitory synapse proteins and reduces amyloid-β and C-terminal fragments (CTFs) of the amyloid precursor protein in an AD-mouse model. Mol Cell Neurosci 113(June):1–5. https://doi.org/10.1016/j.mcn.2021.103624

Article  CAS  Google Scholar 

Kovacs GG (2019) Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 72(11):725–735. https://doi.org/10.1136/jclinpath-2019-205952

Article  PubMed  CAS  Google Scholar 

Kumar P, Kumar A (2009) Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington’s disease like symptoms: possible behavioural, biochemical and cellular alterations. Eur J Pharmacol 615(1–3):91–101. https://doi.org/10.1016/j.ejphar.2009.04.058

Article  PubMed  CAS  Google Scholar 

Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333(1–2):1–4. https://doi.org/10.1016/j.jns.2013.05.010

Article  PubMed  CAS  Google Scholar 

Leray E, Yaouanq J, Le Page E, Coustans M, Laplaud D, Oger J, Edan G (2010) Evidence for a two-stage disability progression in multiple sclerosis. Brain 133(7):1900–1913. https://doi.org/10.1093/brain/awq076

Article  PubMed  PubMed Central  Google Scholar 

Li S, Zhao X, Lazarovici P, Zheng W (2019) Artemether Activation of AMPK/GSK3β(ser9)/Nrf2 Signaling Confers Neuroprotection towards β-Amyloid-Induced Neurotoxicity in 3xTg Alzheimer’s Mouse Model. Oxid Med Cell Longev 1862437. https://doi.org/10.1155/2019/1862437

Lin SP, Li W, Winters A, Liu R, Yang SH (2018) Artemisinin prevents glutamate-induced neuronal cell death via Akt pathway activation. Front Cell Neurosci 12(April):1–9. https://doi.org/10.3389/fncel.2018.00108

Article  CAS  Google Scholar 

Lin S, Wei J, Hu J, Bu J, Zhu L, Li Q, Liao H, Lin P, Ye S, Chen S, Chen X (2021) Artemisinin improves neurocognitive de fi cits associated with sepsis by activating the AMPK axis in microglia. September 2020. https://doi.org/10.1038/s41401-021-00634-3

Liu L, Zhao X, Silva M, Li S, Xing X, Zheng W (2020) Artemisinin protects motoneurons against axotomy-induced apoptosis through activation of the PKA-Akt signaling pathway and promotes neural stem/progenitor cells differentiation into NeuN + neurons. Pharmacol Res 159(April):105049. https://doi.org/10.1016/j.phrs.2020.105049

Article  PubMed  CAS  Google Scholar 

Liu Z, Ren Z, Zhang J, Chuang C (2018) Role of ROS and nutritional antioxidants in human diseases. 9(May):1–14.https://doi.org/10.3389/fphys.2018.00477

Liu Y, Dang W, Zhang S (2021) Artesunate attenuates inflammatory injury and inhibits the NF-k B pathway in a mouse model of cerebral ischemia.https://doi.org/10.1177/03000605211053549

Long H, Cheng Y, Zhou Z, Luo H, Wen D (2021) PI3K/AKT signal pathway : a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. 12(April):1–20. https://doi.org/10.3389/fphar.2021.648636

Lu BW, Baum L, So KF, Chiu K, Xie LK (2019) More than anti-malarial agents: therapeutic potential of artemisinins in neurodegeneration. Neural Regen Res 14(9):1494–1498. https://doi.org/10.4103/1673-5374.255960

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ma Z, Woon CY-N, Liu C-G, Cheng J-T, You M, Sethi G, Wong AL-A, Ho PC-L, Zhang D, Ong P, Wang L, Goh B-C (2021) Repurposing artemisinin and its derivatives as anticancer drugs: a chance or challenge? Front Pharmacol 12(December):1–26. https://doi.org/10.3389/fphar.2021.828856

Article  CAS  Google Scholar 

Manning BD, Toker A (2017) Review AKT/PKB signaling : navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Matsuda S, Ikeda Y, Murakami M, Nakagawa Y, Tsuji A, Kitagishi Y (2019) Roles of PI3K/AKT/GSK3 pathway involved in psychiatric illnesses. Diseases 7(1):22. https://doi.org/10.3390/diseases7010022

Article  PubMed  PubMed Central  CAS  Google Scholar 

Navaratnam V, Mansor SM, Sit NW, Grace J, Li Q, Olliaro P (2000) Pharmacokinetics of artemisinin-type compounds. Clin Pharmacokinet 39(4):255–270. https://doi.org/10.2165/00003088-200039040-00002

Article  PubMed  CAS  Google Scholar 

Newton PN, Van Vugt M, Teja-Isavadharm P, Siriyanonda D, Rasameesoroj M, Teerapong P, Ruangveerayuth R, Slight T, Nosten F, Suputtamongkol Y, Looareesuwan S, White NJ (2002) Comparison of oral artesunate and dihydroartemisinin antimalarial bioavailabilities in acute falciparum malaria. Antimicrob Agents Chemother 46(4):1125–1127. https://doi.org/10.1128/AAC.46.4.1125-1127.2002

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nitulescu GM, Margina D, Juzenas P, Peng Q, Spandidos DΑ, Libra M, Tsatsakis AM (2016) Akt inhibitors in cancer treatment : the long journey from drug discovery to clinical use (Review). 869–885. https://doi.org/10.3892/ijo.2015.3306

Ojeda L, Gao J, Hooten KG, Wang E, Thonhoff JR, Dunn TJ, Gao T, Wu P (2011) Critical role of PI3K/Akt/GSK3β in motoneuron specification from human neural stem cells in response to FGF2 and EGF. PLoS ONE 6(8):e23414. https://doi.org/10.1371/journal.pone.0023414

Article  PubMed  PubMed Central  CAS  Google Scholar 

Okorji UP, Velagapudi R, El-Bakoush A, Fiebich BL, Olajide OA (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53(9):6426–6443. https://doi.org/10.1007/s12035-015-9543-1

Article  PubMed  CAS  Google Scholar 

Okorji UP, Velagapudi R, El-bakoush A (2015) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. https://doi.org/10.1007/s12035-015-9543-1

Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology 72(21 SUPPL 4). https://doi.org/10.1212/WNL.0b013e3181a1d44c

Peden AH, Ironside JW (2012) Molecular pathology in neurodegenerative diseases. Curr Drug Targets 13(12):1548–1559. https://doi.org/10.2174/138945012803530134

Article  PubMed  CAS  Google Scholar 

Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67(10):1348–1361. https://doi.org/10.1002/dneu.20506

留言 (0)

沒有登入
gif