Plant Bioactive Ingredients in Delivery Systems and Nanocarriers for the Treatment of Leishmaniasis: An Evidence-Based Review

1. Ibarra-Meneses AV, Corbeil A, Wagner V, Onwuchekwa C, Fernandez-Prada C. Identification of asymptomatic Leishmania infections: a scoping review. Parasites Vec-tors. 2022;15(1):5.
2. Mann S, Frasca K, Scherrer S, Henao-Martínez AF, Newman S, Ramanan P, Sua-rez JA. A Review of leishmaniasis: current knowledge and future directions. Curr Trop Med Rep. 2021;8(2):121-32.
3. Alanazi AD, Alyousif MS, Saifi MA, Alana-zi IO. Epidemiological studies on cutane-ous leishmaniasis in Ad-Dawadimi District, Saudi Arabia. Trop J Pharm Res. 2016;15(12):2709-12.
4. AlMohammed HI, Khudair Khalaf A, E Albalawi A, et al. Chitosan-Based Nano-materials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review. Nanomaterials. 2021;11(3):689.
5. Nafari A, Cheraghipour K, Sepahvand M, Shahrokhi G, Gabal E, Mahmoudvand H. Nanoparticles: New agents toward treat-ment of leishmaniasis. Parasite Epidemiol Control. 2020;10:e00156.
6. Albalawi AE, Alanazi AD, Sharifi I, Ezzat-khah F. A systematic review of curcumin and its derivatives as valuable sources of antileishmanial agents. Acta Parasitol. 2021;66(3):797-811.
7. Albalawi AE, Khalaf AK, Alyousif MS, et al. Fe3O4@ piroctone olamine magnetic nanoparticles: Synthesize and therapeutic potential in cutaneous leishmaniasis. Bio-med Pharmacother. 2021;139:111566.
8. Albalawi AE, Abdel-Shafy S, Khudair Khalaf A, et al. Therapeutic potential of green synthesized copper nanoparticles alone or combined with meglumine anti-moniate (glucantime®) in cutaneous leish-maniasis. Nanomaterials. 2021;31;11(4):891.
9. Cheraghipour K, Ezatpour B, Masoori L, et al. Anti-Candida activity of curcumin: A systematic review. Curr Drug Discov Technol. 2021;18(3):379-90.
10. Cheraghipour K, Marzban A, Ezatpour B, Khanizadeh S, Koshki J. Antiparasitic properties of curcumin: A review. AIMS Agric Food. 2018;3(4):561-78
11. Shakib P, Ali AS, Javanmard E, et al, Cheraghipour K. Anti-trichophyton effects of curcumin: A systematic review. Anti-Infect Agents. 2021;19(4):29-34.
12. Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin’s beneficial effects on neuroblastoma: Mechanisms, challenges, and potential so-lutions. Biomolecules. 2020;10(11):1469.
13. Fattahi Bafghi A, Haghirosadat BF, Yazdi-an F, et al. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotechnol. 2021;51(10):990-7.
14. Tiwari B, Pahuja R, Kumar P, Rath SK, Gupta KC, Goyal N. Nanotized curcumin and miltefosine, a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob Agents Chemother. 2017;61(3):e01169-16.
15. Chaubey P, Mishra B, Mudavath SL, et al, Monteiro M. Mannose-conjugated curcu-min-chitosan nanoparticles: efficacy and toxicity assessments against Leishmania donovani. Int J Biol Macromol. 2018;111:109-20.
16. Yogeeswari P, Sriram D. Betulinic acid and its derivatives: a review on their biological properties. Current Med Chem. 2005;12(6):657-66.
17. Moghaddam MG, Ahmad FB, Samzadeh-Kermani A. Biological activity of betulinic acid: a review. Pharm Pharmacol. 2012;3:119-123
18. Halder A, Shukla D, Das S, Roy P, Mukherjee A, Saha B. Lactoferrin-modified Betulinic Acid-loaded PLGA na-noparticles are strong anti-leishmanials. Cytokine. 2018;110:412-5.
19. Roy Chowdhury A, Mandal S, Goswami A, et al. Dihydrobetulinic acid induces apop-tosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Mol Med. 2003;9(1):26-36.
20. Sousa MC, Varandas R, Santos RC, San-tos-Rosa M, Alves V, Salvador JA. An-tileishmanial activity of semisynthetic lu-pane triterpenoids betulin and betulinic ac-id derivatives: synergistic effects with miltefosine. PloS One. 2014;9(3):e89939.
21. Zadeh Mehrizi T, Shafiee Ardestani M, Haji Molla Hoseini M, Khamesipour A, Mosaffa N, Ramezani A. Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observa-tion of such parasite in kidney. Sci Rep. 2018;8(1):1-9.
22. Zadeh Mehrizi T, Khamesipour A, Ar-destani MS, et al. Comparative analysis be-tween four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine. 2019;14:7593.
23. Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasi-tol. 2002;32(13):1655-60.
24. Ghaffarifar F, Heydari FE, Dalimi A, Has-san ZM, Delavari M, Mikaeiloo H. Evalua-tion of apoptotic and antileishmanial ac-tivities of Artemisinin on promastigotes and BALB/C mice infected with Leishma-nia major. Iran J Parasitol. 2015;10(2):258.
25. Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, Chatterjee M. Arte-misinin triggers induction of cell-cycle ar-rest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol. 2007;56(9):1213-8.
26. Want MY, Islammudin M, Chouhan G, Ozbak HA, Hemeg HA, Chattopadhyay AP, Afrin F. Nanoliposomal artemisinin for the treatment of murine visceral leish-maniasis. Int J Nanomedicine. 2017;12:2189.
27. Want MY, Islamuddin M, Chouhan G, Dasgupta AK, Chattopadhyay AP, Afrin F. A new approach for the delivery of arte-misinin: formulation, characterization, and ex-vivo antileishmanial studies. J Colloid Interface Sci. 2014;432:258-69.
28. Siddiqui EJ, Azad I, Khan AR, Khan T. Thiosemicarbazone complexes as versatile medicinal chemistry agents: a review. J Drug Deliv Ther. 2019;9(3):689-703.
29. Britta EA, Scariot DB, Falzirolli H, Ueda-Nakamura T, Silva CC, Borsali R, Naka-mura CV. Cell death and ultrastructural al-terations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thi-osemicarbazone derived from S-limonene. BMC Microbiol. 2014;14(1):1-2.
30. Kumar G, Singh D, Tali JA, Dheer D, Shankar R. Andrographolide: Chemical modification and its effect on biological activities. Bioorg Chem. 2020;95:103511.
31. Das S, Halder A, Mandal S, Mazumder MA, Bera T, Mukherjee A, Roy P. Andro-grapholide engineered gold nanoparticle to overcome drug resistant visceral leishman-iasis. Artif Cells Nanomed Biotechnol. 2018;46(sup1):751-62.
32. Roy P, Das S, Bera T, Mondol S, Mukher-jee A. Andrographolide nanoparticles in leishmaniasis: characterization and in vitro evaluations. Int J Nanomedicine. 2010;5:1113.
33. Sinha J, Mukhopadhyay S, Das N, Basu MK. Targeting of liposomal andro-grapholide to L. donovani-infected macro-phages in vivo. Drug Delivery. 2000;7(4):209-13.
34. Oghumu S, Varikuti S, Saljoughian N, et al. Pentalinonsterol, a constituent of pentali-non andrieuxii, possesses potent im-munomodulatory activity and primes t cell immune responses. J Nat Prod. 2017;80(9):2515-23.
35. Gupta G, Peine KJ, Abdelhamid D, et al. A novel sterol isolated from a plant used by Mayan traditional healers is effective in treatment of visceral leishmaniasis caused by Leishmania donovani. ACS Infect Dis. 2015;1(10):497-506.
36. Seo DY, Lee SR, Heo JW, et al. Ursolic acid in health and disease. Korean J Phys-iol Pharmacol. 2018;22(3):235-48.
37. Jesus JA, Sousa IM, da Silva TN, et al. Pre-clinical assessment of ursolic acid loaded into nanostructured lipid carriers in exper-imental visceral leishmaniasis. Pharmaceu-tics. 2021;13(6):908.
38. Keil M, Härtle B, Guillaume A, Psiorz M. Production of amarogentin in root cultures of Swertia chirata. Planta Med. 2000;66(05):452-7.
39. Medda S, Mukhopadhyay S, Basu MK. Evaluation of the in-vivo activity and tox-icity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. J Antimicrob Chemother. 1999;44(6):791-4.
40. Cheraghipour K, Masoori L, Zivdari M, et al. A systematic appraisal of the use of car-vacrol-rich plants to treat hydatid cysts. J Parasit Dis.. 2022;16:1-7.
41. Suntres ZE, Coccimiglio J, Alipour M. The bioactivity and toxicological actions of car-vacrol. Crit Rev Food Sci Nut. 2015;55(3):304-18.
42. Galvão JG, Santos RL, Silva AR, et al. Carvacrol loaded nanostructured lipid car-riers as a promising parenteral formulation for leishmaniasis treatment. Eur J Pharm Sci. 2020;150:105335.
43. Rashid PT, Ahmed M, Rahaman MM, Muhit MA. 14-Deoxyandrographolide iso-lated from Andrographis paniculata (Burm. f) Nees growing in Bangladesh and its anti-microbial properties. Dhaka Univ J Pharm Sci. 2018;17(2):265-7.
44. Lala S, Nandy AK, Mahato SB, Basu MK. Delivery in vivo of 14-deoxy-11-oxoandrographolide, an antileishmanial agent, by different drug carriers. Indian J Biochem Biophys. 2003;40(3):169-74.
45. Kheirandish F, Delfan B, Mahmoudvand H, et al. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivi-er extract. Biomed Pharmacother. 2016;82:208-15.
46. Sarkar S, Mandal S, Sinha J, Mukhopadh-yay S, Das N, Basu MK. Quercetin: critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular deliv-ery modes. J Drug Target. 2002;10(8):573-8.
47. Sousa-Batista AJ, Poletto FS, Philipon CI, Guterres SS, Pohlmann AR, Rossi-Bergmann B. Lipid-core nanocapsules in-crease the oral efficacy of quercetin in cu-taneous leishmaniasis. Parasitol. 2017;144(13):1769-74.
48. Almeida ER. Preclinical and clinical studies of lapachol and beta-lapachone. Open Nat Prod J. 2009;2(1): 42-47.
49. Boveris AL, Docampo RO, Turrens JF, Stoppani AO. Effect of β-lapachone on superoxide anion and hydrogen peroxide production in Trypanosoma cruzi. Biochem J. 1978;175(2):431-9.
50. Ramos-Milaré ÁC, Oyama J, Murase LS, et al. The anti-Leishmania potential of bioac-tive compounds derived from naphtho-quinones and their possible applications. A systematic review of animal studies. Parasi-tol Res. 2022;121(5):1247-1280.
51. Moreno E, Schwartz J, Larrea E, et al. As-sessment of β-lapachone loaded in leci-thin-chitosan nanoparticles for the topical treatment of cutaneous leishmaniasis in L. major infected BALB/c mice. Nanomedi-cine. 2015;11(8):2003-12.
52. Dayawansa S, Umeno K, Takakura H, et al. Autonomic responses during inhalation of natural fragrance of “Cedrol” in humans. Auton Neurosci. 2003;108(1-2):79-86.
53. Kar N, Chakraborty S, De AK, Ghosh S, Bera T. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibili-ties of wild and drug resistant Leishmania donovani amastigotes. Eur J Pharm Sci. 2017;104:196-211.
54. Zadeh Mehrizi T, Pirali Hamedani M, Ebrahimi Shahmabadi H, et al. Effective materials of medicinal plants for Leishmania treatment in vivo environment. J Med Plant. 2020;19(74):39-62.
55. Torres-Santos EC, Rodrigues Jr JM, Moreira DL, Kaplan MA, Rossi-Bergmann B. Improvement of in vitro and in vivo antileishmanial activities of 2′, 6′-dihydroxy-4′-methoxychalcone by entrap-ment in poly (D, L-lactide) nanoparticles. Antimicrob Agents Chemother. 1999; 43(7):1776-8.
56. Pollier J, Goossens A. Oleanolic acid. Phy-tochemistry. 2012; 77:10-5.
57. Ghosh S, Kar N, Bera T. Oleanolic acid loaded poly lactic co-glycolic acid-vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leish-maniasis. Int J Biol Macromol. 2016; 93:961-70.

留言 (0)

沒有登入
gif