Antibodies in action: the role of humoral immunity in the fight against atherosclerosis

Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics—2021 update. Circulation. 2021;143(8):e254–743.

Article  PubMed  Google Scholar 

Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity. 2013;38(6):1092–104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High-density lipoprotein as a protective factor against coronary heart-disease - Framingham study. Am J Med. 1977;62(5):707–14.

Article  CAS  PubMed  Google Scholar 

Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann Intern Med. 1979;90(1):85–91.

Article  CAS  PubMed  Google Scholar 

Asztalos BF, Schaefer EJ. HDL in atherosclerosis: actor or bystander? Atheroscler Suppl. 2003;4(1):21–9.

Article  CAS  PubMed  Google Scholar 

Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626–35.

Article  CAS  PubMed  Google Scholar 

Greaves DR, Gordon S. The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res. 2009;50 Suppl(Supplement):S282–6.

Article  PubMed  Google Scholar 

Binder CJ, Papac-Milicevic N, Witztum JL. Innate sensing of oxidation-specific epitopes in health and disease. Nat Rev Immunol. 2016;16(8):485–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu H, Ha T, Liu L, Wang X, Gao M, Kelley J, et al. Scavenger receptor a (SR-A) is required for LPS-induced TLR4 mediated NF-kappaB activation in macrophages. Biochim Biophys Acta. 2012;1823(7):1192–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 1992;140(2):301–16.

CAS  PubMed  PubMed Central  Google Scholar 

Kruth HS. Sequestration of aggregated low-density lipoproteins by macrophages. Curr Opin Lipidol. 2002;13(5):483–8.

Article  CAS  PubMed  Google Scholar 

Martinet W, Schrijvers DM, De Meyer GR. Necrotic cell death in atherosclerosis. Basic Res Cardiol. 2011;106(5):749–60.

Article  CAS  PubMed  Google Scholar 

Kasikara C, Doran AC, Cai B, Tabas I. The role of non-resolving inflammation in atherosclerosis. J Clin Invest. 2018;128(7):2713–23.

Article  PubMed  PubMed Central  Google Scholar 

Opoku E, Traughber CA, Zhang D, Iacano AJ, Khan M, Han J, et al. Gasdermin D mediates inflammation-induced defects in reverse cholesterol transport and promotes atherosclerosis. Front Cell Dev Biol. 2021;9:715211.

Article  PubMed  PubMed Central  Google Scholar 

Wu XW, Molinaro C, Johnson N, Casiano CA. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens - implications for systemic autoimmunity. Arthritis Rheum. 2001;44(11):2642–52.

Article  CAS  PubMed  Google Scholar 

Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26(3–4):152–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative selection of organ-specific T cells. Nat Immunol. 2003;4(4):350–4.

Article  CAS  PubMed  Google Scholar 

Gardner JM, Fletcher AL, Anderson MS, Turley SJ. AIRE in the thymus and beyond. Curr Opin Immunol. 2009;21(6):582–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takaba H, Takayanagi H. The mechanisms of T cell selection in the Thymus. Trends Immunol. 2017;38(11):805–16.

Article  CAS  PubMed  Google Scholar 

Emeson EE, Robertson ALJ. T lymphocytes in aortic and coronary Intimas. Their potential role in Atherogenesis. Am J Pathol. 1988;130(2):369–76.

CAS  PubMed  PubMed Central  Google Scholar 

Shimokama T, Haraoka S, Watanabe T. Immunohistochemical and ultrastructural demonstration of the lymphocyte-macrophage interaction in human aortic intima. Modern Pathol. 1991;4(1):101–7.

CAS  Google Scholar 

Paulsson G, Zhou X, Tornquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2000;20(1):10–7.

Article  CAS  PubMed  Google Scholar 

Hermansson A, Ketelhuth DF, Strodthoff D, Wurm M, Hansson EM, Nicoletti A, et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med. 2010;207(5):1081–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1997;94(9):4642–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest. 1997;100(6):1575–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diaz A, Gonzalez-Alayon I, Perez-Torrado V, Suarez-Martins M. CD40-CD154: a perspective from type 2 immunity. Semin Immunol. 2021;53:101528.

Article  CAS  PubMed  Google Scholar 

Daub S, Lutgens E, Munzel T, Daiber A. CD40/CD40L and related signaling pathways in cardiovascular health and disease-the pros and cons for Cardioprotection. Int J Mol Sci. 2020;21(22):8533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L dyad as immunotherapeutic target in cardiovascular disease. J Cardiovasc Transl Res. 2021;14(1):13–22.

Article  PubMed  Google Scholar 

Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation. 2013;127(9):1028–39.

Article  CAS  PubMed  Google Scholar 

Cochain C, Koch M, Chaudhari SM, Busch M, Pelisek J, Boon L, et al. CD8+ T cells regulate Monopoiesis and circulating Ly6C-high monocyte levels in atherosclerosis in mice. Circ Res. 2015;117(3):244–53.

Article  CAS  PubMed  Google Scholar 

Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass Cytometry. Circ Res. 2018;122(12):1675–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25(10):1576–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liuzzo G, Vallejo AN, Kopecky SL, Frye RL, Holmes DR, Goronzy JJ, et al. Molecular fingerprint of interferon-gamma signaling in unstable angina. Circulation. 2001;103(11):1509–14.

Article  CAS  PubMed  Google Scholar 

Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158(3):670–89.

Article  CAS  PubMed  Google Scholar 

Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest. 1997;99(11):2752–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whitman SC, Ravisankar P, Elam H, Daugherty A. Exogenous interferon-γ enhances atherosclerosis in Apolipoprotein E−/− mice. Am J Pathol. 2000;157(6):1819–24.

留言 (0)

沒有登入
gif