Centrin-deficient Leishmania mexicana confers protection against Old World visceral leishmaniasis

Burza, S., Croft, S. L. & Boelaert, M. Leishmaniasis. Lancet 392, 951–970 (2018).

Article  PubMed  Google Scholar 

Kaye, P. & Scott, P. Leishmaniasis: complexity at the host-pathogen interface. Nat. Rev. Microbiol 9, 604–615 (2011).

Article  PubMed  Google Scholar 

McGwire, B. S. & Satoskar, A. R. Leishmaniasis: clinical syndromes and treatment. QJM 107, 7–14 (2014).

Article  PubMed  Google Scholar 

Curtin, J. M. & Aronson, N. E. Leishmaniasis in the United States: emerging issues in a region of low endemicity. Microorganisms 9, https://doi.org/10.3390/microorganisms9030578 (2021).

McIlwee, B. E., Weis, S. E. & Hosler, G. A. Incidence of endemic human cutaneous leishmaniasis in the United States. JAMA Dermatol. 154, 1032–1039 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Taslimi, Y., Zahedifard, F. & Rafati, S. Leishmaniasis and various immunotherapeutic approaches. Parasitology 145, 497–507 (2018).

Article  PubMed  Google Scholar 

Ghorbani, M. & Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy. Drug Des. Devel Ther. 12, 25–40 (2018).

Article  PubMed  Google Scholar 

Ponte-Sucre, A. et al. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl. Trop. Dis. 11, e0006052 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lainson, R. & Shaw, J. J. Leishmaniasis in Brazil: XII. Observations on cross-immunity in monkeys and man infected with Leishmania mexicana mexicana, L. m. amazonensis, L. braziliensis braziliensis, L. b. guyanensis and L. b. panamensis. J. Trop. Med. Hyg. 80, 29–35 (1977).

PubMed  Google Scholar 

Porrozzi, R., Teva, A., Amaral, V. F., Santos da Costa, M. V. & Grimaldi, G. Jr. Cross-immunity experiments between different species or strains of Leishmania in rhesus macaques (Macaca mulatta). Am. J. Trop. Med Hyg. 71, 297–305 (2004).

Article  PubMed  Google Scholar 

Ostyn, B. et al. Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: a prospective study. PLoS Negl. Trop. Dis. 5, e1284 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Jeronimo, S. M. et al. Natural history of Leishmania (Leishmania) chagasi infection in Northeastern Brazil: long-term follow-up. Clin. Infect. Dis. 30, 608–609 (2000).

Article  PubMed  Google Scholar 

Nadim, A., Javadian, E., Tahvildar-Bidruni, G. & Ghorbani, M. Effectiveness of leishmanization in the control of cutaneous leishmaniasis. Bull. Soc. Pathol. Exot. Filiales 76, 377–383 (1983).

PubMed  Google Scholar 

Kellina, O. I. Problem and current lines in investigations on the epidemiology of leishmaniasis and its control in the U.S.S.R. Bull. Soc. Pathol. Exot. Filiales 74, 306–318 (1981).

PubMed  Google Scholar 

Seyed, N., Peters, N. C. & Rafati, S. Translating observations from leishmanization into non-living vaccines: the potential of dendritic cell-based vaccination strategies against leishmania. Front. Immunol. 9, 1227 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Romano, A., Doria, N. A., Mendez, J., Sacks, D. L. & Peters, N. C. Cutaneous infection with Leishmania major mediates heterologous protection against visceral infection with Leishmania infantum. J. Immunol. 195, 3816–3827 (2015).

Article  PubMed  Google Scholar 

Zijlstra, E. E., el-Hassan, A. M., Ismael, A. & Ghalib, H. W. Endemic kala-azar in eastern Sudan: a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Am. J. Trop. Med Hyg. 51, 826–836 (1994).

Article  PubMed  Google Scholar 

Okwor, I. & Uzonna, J. Vaccines and vaccination strategies against human cutaneous leishmaniasis. Hum. Vaccin 5, 291–301 (2009).

Article  PubMed  Google Scholar 

Noazin, S. et al. First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine 26, 6759–6767 (2008).

Article  PubMed  Google Scholar 

Scorza, B. M., Carvalho, E. M. & Wilson, M. E. Cutaneous manifestations of human and murine leishmaniasis. Int J Mol Sci. 18, https://doi.org/10.3390/ijms18061296 (2017).

Gabriel, A. et al. Cutaneous leishmaniasis: the complexity of host’s effective immune response against a polymorphic parasitic disease. J. Immunol. Res 2019, 2603730 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Rosas, L. E. et al. Genetic background influences immune responses and disease outcome of cutaneous L. mexicana infection in mice. Int Immunol. 17, 1347–1357 (2005).

Article  PubMed  Google Scholar 

Paiva, M. B. et al. A cytokine network balance influences the fate of Leishmania (Viannia) braziliensis infection in a cutaneous leishmaniasis hamster model. Front Immunol. 12, 656919 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Volpedo, G. et al. Centrin-deficient Leishmania mexicana confers protection against New World cutaneous leishmaniasis. NPJ Vaccin. 7, 32 (2022).

Article  Google Scholar 

Selvapandiyan, A. et al. Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. J. Biol. Chem. 279, 25703–25710 (2004).

Article  PubMed  Google Scholar 

Selvapandiyan, A. et al. Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol. Biol. Cell 18, 3290–3301 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Karmakar, S. et al. Preclinical validation of a live attenuated dermotropic Leishmania vaccine against vector transmitted fatal visceral leishmaniasis. Commun. Biol. 4, 929 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, W. W. et al. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat. Commun. 11, 3461 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Aslan, H. et al. A new model of progressive visceral leishmaniasis in hamsters by natural transmission via bites of vector sand flies. J. Infect. Dis. 207, 1328–1338 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Dey, R. et al. Characterization of cross-protection by genetically modified live-attenuated Leishmania donovani parasites against Leishmania mexicana. J. Immunol. 193, 3513–3527 (2014).

Article  PubMed  Google Scholar 

Biedermann, T. et al. IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat. Immunol. 2, 1054–1060 (2001).

Article  PubMed  Google Scholar 

Hurdayal, R. et al. Deletion of IL-4 receptor alpha on dendritic cells renders BALB/c mice hypersusceptible to Leishmania major infection. PLoS Pathog. 9, e1003699 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Wilson, H. R., Dieckmann, B. S. & Childs, G. E. Leishmania braziliensis and Leishmania mexicana: experimental cutaneous infections in golden hamsters. Exp. Parasitol. 47, 270–283 (1979).

Article  PubMed  Google Scholar 

Melby, P. C., Chandrasekar, B., Zhao, W. & Coe, J. E. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J. Immunol. 166, 1912–1920 (2001).

Article  PubMed  Google Scholar 

Carvalho, E. M. et al. Restoration of IFN-gamma production and lymphocyte proliferation in visceral leishmaniasis. J. Immunol. 152, 5949–5956 (1994).

PubMed  Google Scholar 

Karp, C. L. et al. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J. Clin. Invest 91, 1644–1648 (1993).

Article  PubMed  PubMed Central  Google Scholar 

Poudel, B. et al. Acute IL-4 governs pathogenic T cell responses during Leishmania major Infection. Immunohorizons 4, 546–560 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Padigel, U. M., Alexander, J. & Farrell, J. P. The role of interleukin-10 in susceptibility of BALB/c mice to infection with Leishmania mexicana and Leishmania amazonensis. J. Immunol. 171, 3705–3710 (2003).

Article  PubMed  Google Scholar 

Alexander, J. et al. An essential role for IL-13 in maintaining a non-healing response following Leishmania mexicana infection. Eur. J. Immunol. 32, 2923–2933 (2002).

Article  PubMed  Google Scholar 

Bryson, K. J. et al. BALB/c mice deficient in CD4 T cell IL-4Ralpha expression control Leishmania mexicana Load although female but not male mice develop a healer phenotype. PLoS Negl. Trop. Dis. 5, e930 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Satoskar, A., Bluethmann, H. & Alexander, J. Disruption of the murine interleukin-4 gene inhibits disease progression during Leishmania mexicana infection but does not increase control of Leishmania donovani infection. Infect. Immun. 63, 4894–4899 (1995).

Article  PubMed  PubMed Central  Google Scholar 

Parkash, V., Kaye, P. M., Layton, A. M. & Lacey, C. J. Vaccines against leishmaniasis: using controlled human infection models to accelerate development. Expert Rev. Vaccin. 20, 1407–1418 (2021).

Article  Google Scholar 

留言 (0)

沒有登入
gif