Prolonged culture of human pancreatic islets under glucotoxic conditions changes their acute beta cell calcium and insulin secretion glucose response curves from sigmoid to bell-shaped

Henquin JC, Dufrane D, Nenquin M (2006) Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55(12):3470–3477. https://doi.org/10.2337/db06-0868

Article  CAS  PubMed  Google Scholar 

Henquin JC, Dufrane D, Kerr-Conte J, Nenquin M (2015) Dynamics of glucose-induced insulin secretion in normal human islets. Am J Physiol Endocrinol Metab 309(7):E640–E650. https://doi.org/10.1152/ajpendo.00251.2015

Article  CAS  PubMed  Google Scholar 

Rorsman P, Ashcroft FM (2018) Pancreatic β-cell electrical activity and insulin secretion: Of mice and men. Physiol Rev 98(1):117–214. https://doi.org/10.1152/physrev.00008.2017

Article  CAS  PubMed  Google Scholar 

Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52(5):739–751. https://doi.org/10.1007/s00125-009-1314-y

Article  CAS  PubMed  Google Scholar 

Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC (2008) Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42. https://doi.org/10.1111/j.1463-1326.2008.00969.x

Turner RC, Cull CA, Frighi V, Holman RR (1999) Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 281(21):2005–2012. https://doi.org/10.1001/jama.281.21.2005

Article  CAS  PubMed  Google Scholar 

Andersson A, Hellerstrom C (1972) Metabolic characteristics of isolated pancreatic islets in tissue culture. Diabetes 21(2 Suppl):546–554. https://doi.org/10.2337/diab.21.2.s546

Article  CAS  PubMed  Google Scholar 

Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 29(3):351–366. https://doi.org/10.1210/er.2007-0023

van Raalte DH, Diamant M (2011) Glucolipotoxicity and beta cells in type 2 diabetes mellitus: target for durable therapy? Diabetes Res Clin Pract 93(Suppl 1):S37–S46. https://doi.org/10.1016/S0168-8227(11)70012-2

Article  CAS  PubMed  Google Scholar 

Bensellam M, Laybutt DR, Jonas JC (2012) The molecular mechanisms of pancreatic beta-cell glucotoxicity: Recent findings and future research directions. Mol Cell Endocrinol 364(1-2):1–27. https://doi.org/10.1016/j.mce.2012.08.003

Article  CAS  PubMed  Google Scholar 

Prentki M, Peyot ML, Masiello P, Murthy Madiraju SR (2020) Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes 69(3):279–290. https://doi.org/10.2337/dbi19-0014

Article  CAS  PubMed  Google Scholar 

Lytrivi M, Castell AL, Poitout V, Cnop M (2020) Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes. J Mol Biol 432(5):1514–1534. https://doi.org/10.1016/j.jmb.2019.09.016

Article  CAS  PubMed  Google Scholar 

Weir GC (2020) Glucolipotoxicity, beta-cells, and diabetes: the emperor has no clothes. Diabetes 69(3):273–278. https://doi.org/10.2337/db19-0138

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai C, Kayton NS, Shostak A et al (2016) Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. J Clin Invest 126(5):1857–1870. https://doi.org/10.1172/JCI83657

Article  PubMed  PubMed Central  Google Scholar 

Marselli L, Piron A, Suleiman M et al (2020) Persistent or transient human β cell dysfunction induced by metabolic stress: specific signatures and shared gene expression with type 2 diabetes. Cell Rep 33(9):108466–108466. https://doi.org/10.1016/j.celrep.2020.108466

Article  CAS  PubMed  Google Scholar 

Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R (2011) Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54(10):2506–2514. https://doi.org/10.1007/s00125-011-2204-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor R, Al-Mrabeh A, Zhyzhneuskaya S et al (2018) Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab 28(4):547–556; e541-e543. https://doi.org/10.1016/j.cmet.2018.07.003

Article  CAS  PubMed  Google Scholar 

de Souza AH, Santos LRB, Roma LP, Bensellam M, Carpinelli AR, Jonas JC (2017) NADPH oxidase-2 does not contribute to beta-cell glucotoxicity in cultured pancreatic islets from C57BL/6J mice. Mol Cell Endocrinol 439:354–362. https://doi.org/10.1016/j.mce.2016.09.022

Article  CAS  PubMed  Google Scholar 

Roma LP, Jonas JC (2020) Nutrient metabolism, subcellular redox state, and oxidative stress in pancreatic islets and beta-cells. J Mol Biol 432(5):1461–1493. https://doi.org/10.1016/j.jmb.2019.10.012

Article  CAS  PubMed  Google Scholar 

Detimary P, Jonas JC, Henquin JC (1996) Stable and diffusible pools of nucleotides in pancreatic islet cells. Endocrinology 137(11):4671–4676. https://doi.org/10.1210/endo.137.11.8895332

Article  CAS  PubMed  Google Scholar 

Khaldi MZ, Guiot Y, Gilon P, Henquin JC, Jonas JC (2004) Increased glucose sensitivity of both triggering and amplifying pathways of insulin secretion in rat islets cultured for 1 wk in high glucose. Am J Physiol Endocrinol Metab 287(2):E207–E217. https://doi.org/10.1152/ajpendo.00426.2003

Article  CAS  PubMed  Google Scholar 

Jaffredo M, Bertin E, Pirog A et al (2021) Dynamic uni- and multicellular patterns encode biphasic activity in pancreatic islets. Diabetes 70(4):878–888. https://doi.org/10.2337/db20-0214

Article  CAS  PubMed  Google Scholar 

Lebreton F, Pirog A, Belouah I et al (2015) Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells. Diabetologia 58(6):1291–1299. https://doi.org/10.1007/s00125-015-3558-z

Article  CAS  PubMed  Google Scholar 

Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57(6):1618–1628. https://doi.org/10.2337/db07-0991

Article  CAS  PubMed  Google Scholar 

Ferrannini E, Mari A (2014) beta-Cell function in type 2 diabetes. Metabolism 63(10):1217–1227. https://doi.org/10.1016/j.metabol.2014.05.012

Article  CAS  PubMed  Google Scholar 

Doliba NM, Qin W, Najafi H et al (2012) Glucokinase activation repairs defective bioenergetics of islets of Langerhans isolated from type 2 diabetics. Am J Physiol Endocrinol Metab 302(1):E87–E102. https://doi.org/10.1152/ajpendo.00218.2011

Article  CAS  PubMed  Google Scholar 

Li G, Wu B, Ward MG et al (2016) Multifunctional in vivo imaging of pancreatic islets during diabetes development. J Cell Sci 129(14):2865–2875. https://doi.org/10.1242/jcs.190843

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brereton MF, Rohm M, Shimomura K et al (2016) Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic beta-cells. Nat Commun 7:13496. https://doi.org/10.1038/ncomms13496

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagao M, Esguerra JLS, Asai A et al (2020) Potential protection against type 2 diabetes in obesity through lower CD36 expression and improved exocytosis in beta-cells. Diabetes 69(6):1193–1205. https://doi.org/10.2337/db19-0944

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ling Z, Pipeleers DG (1996) Prolonged exposure of human β cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J Clin Invest 98(12):2805–2812. https://doi.org/10.1172/JCI119108

Eizirik DL, Korbutt GS, Hellerström C (1992) Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the β-cell function. J Clin Invest 90(4):1263–1268. https://doi.org/10.1172/JCI115989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bjorklund A, Lansner A, Grill VE (2000) Glucose-induced [Ca2+]i abnormalities in human pancreatic islets: important role of overstimulation. Diabetes 49(11):1840–1848. https://doi.org/10.2337/diabetes.49.11.1840

Article  CAS  PubMed  Google Scholar 

Masini M, Anello M, Bugliani M et al (2014) Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet beta cells is associated with preserved ATP/ADP ratio. Diabetes Res Clin Pract 104(1):163–170. https://doi.org/10.1016/j.diabres.2013.12.031

Article  CAS  PubMed  Google Scholar 

Chareyron I, Christen S, Moco S et al (2020) Augmented mitochondrial energy metabolism is an early response to chronic glucose stress in human pancreatic beta cells. Diabetologia 63(12):2628–2640. https://doi.org/10.1007/s00125-020-05275-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mir-Coll J, Moede T, Paschen M et al (2021) Human islet microtissues as an in vitro and an in vivo model system for diabetes. Int J Mol Sci 22(4):1813. https://doi.org/10.3390/ijms22041813

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma Z, Wirström T, Borg LAH et al (2012) Diabetes reduces β-cell mitochondria and induces distinct morphological abnormalities, which are reproducible by high glucose in vitro with attendant dysfunction. Islets 4(3):233–242. https://doi.org/10.4161/isl.20516

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif