Monitoring hormone and small molecule secretion dynamics from islets-on-chip

Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751–60. https://doi.org/10.2337/diabetes.49.11.1751.

Article  CAS  PubMed  Google Scholar 

Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschöp MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 2010;6:689–97. https://doi.org/10.1038/nrendo.2010.187.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gromada J, Chabosseau P, Rutter GA. The α-cell in diabetes mellitus. Nat Rev Endocrinol. 2018;14:694–704. https://doi.org/10.1038/s41574-018-0097-y.

Article  CAS  PubMed  Google Scholar 

Gilon P. The role of α-cells in islet function and glucose homeostasis in health and type 2 diabetes. J Mol Biol. 2020;432:1367–94. https://doi.org/10.1016/j.jmb.2020.01.004.

Article  CAS  PubMed  Google Scholar 

Henquin J-C. Paracrine and autocrine control of insulin secretion in human islets: evidence and pending questions. Am J Physiol-Endocrinol Metab. 2021;320:E78-86. https://doi.org/10.1152/ajpendo.00485.2020.

Article  CAS  PubMed  Google Scholar 

Li C, Liu C, Nissim I, Chen J, Chen P, Doliba N, et al. Regulation of glucagon secretion in normal and diabetic human islets by γ-hydroxybutyrate and glycine. J Biol Chem. 2013;288:3938–51. https://doi.org/10.1074/jbc.M112.385682.

Article  CAS  PubMed  Google Scholar 

Di Cairano ES, Moretti S, Marciani P, Sacchi VF, Castagna M, Davalli A, et al. Neurotransmitters and neuropeptides: new players in the control of islet of Langerhans’ cell mass and function: paracrine signals in the endocrine pancreas. J Cell Physiol. 2016;231:756–67. https://doi.org/10.1002/jcp.25176.

Article  CAS  PubMed  Google Scholar 

Satin LS, Kinard TA. Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine. 1998;8:213–24. https://doi.org/10.1385/ENDO:8:3:213.

Article  CAS  PubMed  Google Scholar 

Cabrera O, Jacques-Silva MC, Speier S, Yang S-N, Köhler M, Fachado A, et al. Glutamate is a positive autocrine signal for glucagon release. Cell Metab. 2008;7:545–54. https://doi.org/10.1016/j.cmet.2008.03.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inagaki N, Kuromi H, Gonoi T, Okamoto Y, Ishida H, Seino Y, et al. Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J. 1995;9:686–91. https://doi.org/10.1096/fasebj.9.8.7768362.

Article  CAS  PubMed  Google Scholar 

Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, et al. γ-Aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells. Diabetes. 2010;59:1694–701. https://doi.org/10.2337/db09-0797.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan-Do R, Duong E, Manning Fox JE, Dai X, Suzuki K, Khan S, et al. A glycine-insulin autocrine feedback loop enhances insulin secretion from human β-cells and is impaired in type 2 diabetes. Diabetes. 2016;65:2311–21. https://doi.org/10.2337/db15-1272.

Article  CAS  PubMed  Google Scholar 

Simpson N, Maffei A, Freeby M, Burroughs S, Freyberg Z, Javitch J, et al. Dopamine-mediated autocrine inhibitory circuit regulating human insulin secretion in vitro. Mol Endocrinol. 2012;26:1757–72. https://doi.org/10.1210/me.2012-1101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennet H, Balhuizen A, Medina A, Dekker Nitert M, Ottosson Laakso E, Essén S, et al. Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes. Peptides. 2015;71:113–20. https://doi.org/10.1016/j.peptides.2015.07.008.

Article  CAS  PubMed  Google Scholar 

Almaça J, Molina J, Menegaz D, Pronin AN, Tamayo A, Slepak V, et al. Human beta cells produce and release serotonin to inhibit glucagon secretion from alpha cells. Cell Rep. 2016;17:3281–91. https://doi.org/10.1016/j.celrep.2016.11.072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ota N, Rubakhin SS, Sweedler JV. d-Alanine in the islets of Langerhans of rat pancreas. Biochem Biophys Res Commun. 2014;447:328–33. https://doi.org/10.1016/j.bbrc.2014.03.153.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian W-J, Peters JL, Dahlgren GM, Gee KR, Kennedy RT. Simultaneous monitoring of Zn2+ secretion and intracellular Ca2+ from islets and islet cells by fluorescence microscopy. Biotechniques. 2004;37:922–33. https://doi.org/10.2144/04376BI01.

Article  CAS  PubMed  Google Scholar 

Eaton WJ, Roper MG. A microfluidic system for monitoring glucagon secretion from human pancreatic islets of Langerhans. Anal Methods. 2021;13:3614–9. https://doi.org/10.1039/D1AY00703C.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Schravendijk CF, Kiekens R, Pipeleers DG. Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J Biol Chem. 1992;267:21344–8. https://doi.org/10.1016/S0021-9258(19)36615-3.

Article  PubMed  Google Scholar 

Dishinger JF, Reid KR, Kennedy RT. Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem. 2009;81:3119–27. https://doi.org/10.1021/ac900109t.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohammed JS, Wang Y, Harvat TA, Oberholzer J, Eddington DT. Microfluidic device for multimodal characterization of pancreatic islets. Lab Chip. 2009;9:97–106. https://doi.org/10.1039/B809590F.

Article  CAS  PubMed  Google Scholar 

Bandak B, Yi L, Roper MG. Microfluidic-enabled quantitative measurements of insulin release dynamics from single islets of Langerhans in response to 5-palmitic acid hydroxy stearic acid. Lab Chip. 2018;18:2873–82. https://doi.org/10.1039/C8LC00624E.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Yi L, Roper MG. Microfluidic device for the measurement of amino acid secretion dynamics from murine and human islets of Langerhans. Anal Chem. 2016;88:3369–75. https://doi.org/10.1021/acs.analchem.6b00071.

Article  CAS  PubMed  Google Scholar 

Caicedo A. Paracrine and autocrine interactions in the human islet: more than meets the eye. Semin Cell Dev Biol. 2013;24:11–21. https://doi.org/10.1016/j.semcdb.2012.09.007.

Article  CAS  PubMed  Google Scholar 

Croushore CA, Sweedler JV. Microfluidic systems for studying neurotransmitters and neurotransmission. Lab Chip. 2013;13:1666. https://doi.org/10.1039/c3lc41334a.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coluccio ML, Perozziello G, Malara N, Parrotta E, Zhang P, Gentile F, et al. Microfluidic platforms for cell cultures and investigations. Microelectron Eng. 2019;208:14–28. https://doi.org/10.1016/j.mee.2019.01.004.

Article  CAS  Google Scholar 

Roper MG, Shackman JG, Dahlgren GM, Kennedy RT. Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay. Anal Chem. 2003;75:4711–7. https://doi.org/10.1021/ac0346813.

Article  CAS  PubMed  Google Scholar 

Dishinger JF, Kennedy RT. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Anal Chem. 2007;79:947–54. https://doi.org/10.1021/ac061425s.

Article  CAS  PubMed  Google Scholar 

Li X, Hu J, Easley CJ. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. Lab Chip. 2018;18:2926–35. https://doi.org/10.1039/C8LC00616D.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogunkunle EO, Donohue MJ, Steyer DJ, Adeoye DI, Eaton WJ, Roper MG. Small molecules released from islets of Langerhans determined by liquid chromatography–mass spectrometry. Anal Methods. 2022. https://doi.org/10.1039/D2AY00402J.

Article  PubMed  PubMed Central  Google Scholar 

Godwin LA, Pilkerton ME, Deal KS, Wanders D, Judd RL, Easley CJ. Passively operated microfluidic device for stimulation and secretion sampling of single pancreatic islets. Anal Chem. 2011;83:7166–72. https://doi.org/10.1021/ac201598b.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y, Geng L, Lenhart AE, Li J, Dauer WT, Kennedy RT. Measurement of α-synuclein dynamics in vivo using microdialysis with a novel homogeneous immunoassay. ACS Chem Neurosci. 2022. https://doi.org/10.1021/acschemneuro.2c00251.

Article  PubMed  Google Scholar 

Wong J-MT, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT. Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A 2016;1446:78–90. https://doi.org/10.1016/j.chroma.2016.04.006.

Song P, Mabrouk OS, Hershey ND, Kennedy RT. In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography–mass spectrometry. Anal Chem. 2012;84:412–9. https://doi.org/10.1021/ac202794q.

Article  CAS  PubMed  Google Scholar 

Pralong WF, Bartley C, Wollheim CB. Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J 1990;9:53–60.

留言 (0)

沒有登入
gif