Glyco-conjugated metal–organic framework biosensor for fluorescent detection of bacteria

Potrzebowski MJ, Kaźmierski S, Kassassir H, Miksa B. Phosphorus-31 NMR spectroscopy of condensed matter. Annu Rep NMR Spectrosc. 2010;70:35–114.

Article  CAS  Google Scholar 

James SL. Metal-organic frameworks. Chem Soc Rev. 2003;32(5):276–88.

Article  CAS  PubMed  Google Scholar 

Mehta J, et al. Application of an enzyme encapsulated metal-organic framework composite for convenient sensing and degradation of methyl parathion. Sens Actuators, B Chem. 2019;290:267–74.

Article  CAS  Google Scholar 

Bhardwaj N, Bhardwaj S, Mehta J, Kim K-H, Deep A. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Biosens Bioelectron. 2016;86:799–804.

Article  CAS  PubMed  Google Scholar 

Kaur H, et al. Luminescent metal-organic frameworks and their composites: potential future materials for organic light emitting displays. Coord Chem Rev. 2019;401: 213077.

Article  CAS  Google Scholar 

Sumby CJ. A thin film opening. Nat Chem. 2016;8(4):294–6.

Article  CAS  PubMed  Google Scholar 

Ben T, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem. 2009;121(50):9621–4.

Article  Google Scholar 

Bhardwaj N, Bhardwaj SK, Mehta J, Kim K-H, Deep A. MOF–bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus. ACS Appl Mater Interfaces. 2017;9(39):33589–98.

Article  CAS  PubMed  Google Scholar 

Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chem Rev. 2012;112(2):1126–62.

Article  CAS  PubMed  Google Scholar 

Allendorf MD, Bauer CA, Bhakta R, Houk R. Luminescent metal–organic frameworks. Chem Soc Rev. 2009;38(5):1330–52.

Article  CAS  PubMed  Google Scholar 

Heine J, Müller-Buschbaum K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem Soc Rev. 2013;42(24):9232–42.

Article  CAS  PubMed  Google Scholar 

Mehta J, Dhaka S, Paul AK, Dayananda S, Deep A. Organophosphate hydrolase conjugated UiO-66-NH2 MOF based highly sensitive optical detection of methyl parathion. Environ Res. 2019;174:46–53.

Article  CAS  PubMed  Google Scholar 

Zhu G, et al. A metal-organic zeolitic framework with immobilized urease for use in a tapered optical fiber urea biosensor. Microchim Acta. 2020;187(1):1–9.

Article  Google Scholar 

Abdolmohammad-Zadeh H, Ahmadian F. A fluorescent biosensor based on graphene quantum dots/zirconium-based metal-organic framework nanocomposite as a peroxidase mimic for cholesterol monitoring in human serum. Microchem J. 2021;164: 106001.

Article  CAS  Google Scholar 

Liu H, et al. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sens Actuators, B Chem. 2021;331: 129412.

Article  CAS  Google Scholar 

Afzalinia A, Mirzaee M. Ultrasensitive fluorescent miRNA biosensor based on a “sandwich” oligonucleotide hybridization and fluorescence resonance energy transfer process using an Ln (III)-MOF and Ag nanoparticles for early cancer diagnosis: application of central composite design. ACS Appl Mater Interfaces. 2020;12(14):16076–87.

Article  CAS  PubMed  Google Scholar 

Cohen SM. Modifying MOFs: new chemistry, new materials. Chem Sci. 2010;1(1):32–6.

Article  CAS  Google Scholar 

Hao J-N, Yan B. A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd 2+. Chem Commun. 2015;51(36):7737–40.

Article  CAS  Google Scholar 

Bhardwaj N, Bhardwaj SK, Bhatt D, Tuteja SK, Kim K-H, Deep A. Highly sensitive optical biosensing of Staphylococcus aureus with an antibody/metal–organic framework bioconjugate. Anal Methods. 2019;11(7):917–23.

Article  CAS  Google Scholar 

Silva PM, Lima AL, Silva BV, Coelho LC, Dutra RF, Correia MT. Cratylia mollis lectin nanoelectrode for differential diagnostic of prostate cancer and benign prostatic hyperplasia based on label-free detection. Biosens Bioelectron. 2016;85:171–7.

Article  CAS  PubMed  Google Scholar 

Yang Y, Yu M, Yan T-T, Zhao Z-H, Sha Y-L, Li Z-J. Characterization of multivalent lactose quantum dots and its application in carbohydrate–protein interactions study and cell imaging. Bioorg Med Chem. 2010;18(14):5234–40.

Article  CAS  PubMed  Google Scholar 

Bertók T, Katrlík J, Gemeiner P, Tkac J. Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchim Acta. 2013;180(1–2):1–13.

Article  Google Scholar 

Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011;113(3):236–47.

Article  CAS  PubMed  Google Scholar 

Becer CR. The glycopolymer code: synthesis of glycopolymers and multivalent carbohydrate–lectin interactions. Macromol Rapid Commun. 2012;33(9):742–52.

Article  CAS  PubMed  Google Scholar 

Hushegyi A, Pihíková D, Bertok T, Adam V, Kizek R, Tkac J. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron. 2016;79:644–9.

Article  CAS  PubMed  Google Scholar 

Yang H, Zhou H, Hao H, Gong Q, Nie K. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sens Actuators, B Chem. 2016;229:297–304.

Article  CAS  Google Scholar 

Xi F, Gao J, Wang J, Wang Z. Discrimination and detection of bacteria with a label-free impedimetric biosensor based on self-assembled lectin monolayer. J Electroanal Chem. 2011;656(1–2):252–7.

Article  CAS  Google Scholar 

Yang H, Jie X, Wang L, Zhang Y, Wang M, Wei W. An array consisting of glycosylated quantum dots conjugated to MoS 2 nanosheets for fluorometric identification and quantitation of lectins and bacteria. Microchim Acta. 2018;185(11):512.

Article  Google Scholar 

Kaushal S, Priyadarshi N, Pinnaka AK, Soni S, Deep A, Singhal NK. Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria. Sens Actuators, B Chem. 2019;289:207–15.

Article  CAS  Google Scholar 

Wu M, Li X. Klebsiella pneumoniae and Pseudomonas aeruginosa. Molecular medical microbiology: Elsevier; 2015. p. 1547–64.

Google Scholar 

Zhang X, Xie G, Gou D, Luo P, Yao Y, Chen H. A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosens Bioelectron. 2019;142: 111486.

Article  CAS  PubMed  Google Scholar 

Bhardwaj N, Bhardwaj SK, Bhatt D, Lim DK, Kim K-H, Deep A. Optical detection of waterborne pathogens using nanomaterials. TrAC, Trends Anal Chem. 2019;113:280–300.

Article  CAS  Google Scholar 

Bhardwaj N, Bhardwaj SK, Nayak MK, Mehta J, Kim K-H, Deep A. Fluorescent nanobiosensors for the targeted detection of foodborne bacteria. TrAC, Trends Anal Chem. 2017;97:120–35.

Article  CAS  Google Scholar 

Shah N, Naseby D. Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron. 2015;68:447–53.

Article  CAS  PubMed  Google Scholar 

Jia F, et al. A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim Acta. 2017;184(5):1539–45.

Article  CAS  Google Scholar 

Gomes TA, Elias WP, Scaletsky IC, Guth BE, Rodrigues JF, Piazza RM, et al. Diarrheagenic Escherichia coli. Braz J Microbiol. 2016;47:3–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. Int J Environ Res Public Health. 2013;10(12):6235–54.

Article  PubMed  PubMed Central  Google Scholar 

Schröer F, et al. Lectin and E. coli binding to carbohydrate-functionalized oligo (ethylene glycol)-based microgels: effect of elastic modulus, crosslinker and carbohydrate density. Molecules. 2021;26(2):263.

Article  PubMed  PubMed Central  Google Scholar 

Sauer MM, et al. Binding of the bacterial adhesin FimH to its natural, multivalent high-mannose type glycan targets. J Am Chem Soc. 2018;141(2):936–44.

Article  PubMed  Google Scholar 

Wen L, Zhou L, Zhang B, Meng X, Qu H, Li D. Multifunctional amino-decorated metal–organic frameworks: nonlinear-optic, ferroelectric, fluorescence sensing and photocatalytic properties. J Mater Chem. 2012;22(42):22603–9.

Article  CAS  Google Scholar 

Bhardwaj N, Bhardwaj SK, Mehta J, Nayak MK. Deep A Bacteriophage conjugated IRMOF-3 as a novel opto-sensor for S. arlettae. New J Chem. 2016;40(9):8068–73.

留言 (0)

沒有登入
gif