Synthesis, pharmacological and molecular docking investigations of 1,3,4-oxadiazole-5-thionyl derivatives of extracted cis-clerodane diterpenoid from Cistus monspeliensis

Berti G, Livi O, Segnini D. Cistodiol and cistodioic acid, diterpenoids with a cis-fused clerodane skeleton. Tet Lett. 1970;11:1401–4. https://doi.org/10.1016/S0040-4039(01)97980-8

Article  Google Scholar 

Merritt AT, Ley SV. Clerodane diterpenoids. Nat Prod Rep. 1992;9:243–87. https://doi.org/10.1039/NP9920900243

Article  CAS  PubMed  Google Scholar 

Kolocouris A, Mavromoustakos T, Demetzos C, Terzis A, Grdadolnik SG. Structure elucidation and conformational properties of a novel bioactive clerodane diterpene using a combination of high field NMR spectroscopy, computational analysis, and X-ray diffraction. Bio Med Chem Lett. 2001;11:837–40. https://doi.org/10.1016/s0960-894x(01)00072-5

Article  CAS  Google Scholar 

Guzmán B, Vargas P. Systematics, character evolution, and biogeography of Cistus L. (Cistaceae) based on ITS, trnL-trnF, and matK sequences. Mol Phyl Evol. 2005;37:644–60. https://doi.org/10.1016/j.ympev.2005.04.026

Article  CAS  Google Scholar 

Coello AJ, Fernández‐Mazuecos M, García‐Verdugo C, Vargas P. Phylogeographic sampling guided by species distribution modeling reveals the quaternary history of the Mediterranean-Canarian Cistus monspeliensis (Cistaceae). J Syst Evol. 2020;59:262–77. https://doi.org/10.1111/jse.12570

Article  Google Scholar 

Kalpoutzakis E, Aligiannis N, Skaltsounis AL, Mitakou S. cis-clerodane type diterpenes from Cistus monspeliensis. J Nat Prod. 2003;66:316–9. https://doi.org/10.1021/np0204388

Article  CAS  PubMed  Google Scholar 

Güvenç A, Yıldız S, Özkan AM, Erdurak CS, Coşkun M, Yılmaz G, et al. Antimicrobiological studies on Turkish Cistus species. Pharm Biol. 2008;43:178–83. https://doi.org/10.1080/13880200590919537

Article  CAS  Google Scholar 

Fokialakis N, Kalpoutzakis E, Tekwani BL, Skaltsounis AL, Duke SO. Antileishmanial activity of natural diterpenes from Cistus sp. and semisynthetic derivatives thereof. Biol Pharm Bull. 2006;29:1775–8. https://doi.org/10.1248/bpb.29.1775

Article  CAS  PubMed  Google Scholar 

Fadel H, Kebbi S, Chalchat JC, Figueredo G, Chalard P, Benayache F, et al. Identification of volatile components and antioxidant assessment of the aerial part extracts from an Algerian Cistus albidus L. of the Aures region. J N. Technol Mater. 2020;10:38–46. https://doi.org/10.12816/0058534

Article  CAS  Google Scholar 

Piccinelli AL, Mencherini T, Celano R, Mouhoubi Z, Tamendjari A, Aquino RP, et al. Chemical composition and antioxidant activity of Algerian Propolis. J Agric Food Chem. 2013;61:5080–8. https://doi.org/10.1021/jf400779w

Article  CAS  PubMed  Google Scholar 

Dong B, Yang X, Liu W, An L, Zhang X, Tuerhong M, et al. Anti-inflammatory neo-clerodane diterpenoids from Ajuga pantantha. J Nat Prod. 2020;83:894–904. https://doi.org/10.1021/acs.jnatprod.9b00629

Article  CAS  PubMed  Google Scholar 

Simpson BS, Luo X, Costabile M, Caughey GE, Wang J, Claudie DJ, et al. Polyandric acid A, a clerodane diterpenoid from the Australian medicinal plant Dodonaea polyandra, attenuates pro-inflammatory cytokine secretion in vitro and in vivo. J Nat Prod. 2014;77:85–91. https://doi.org/10.1021/np400704b

Article  CAS  PubMed  Google Scholar 

Kitagawa I, Yoshihara M, Tani T, Yosioka I. Linaridial, a new cis-clerodane-type diterpene dialdehyde, from Linaria japonica miq. Tet Lett. 1975;1:23–26. https://doi.org/10.1016/S0040-4039(00)71767-9

Article  Google Scholar 

Huang Z, Jiang MY, Zhou ZY, Xu D. Two new clerodane diterpenes from Dodonaea viscosa. Z Naturforsh. 2010;65b:83–86. doi: 0932-0776/10/0100-0083

Article  Google Scholar 

Khalil NM, Sperotto JS, Manfron MP. Antiinflamatory activity and acute toxicity of Dodonaea viscosa. Fitoterapia. 2006;77:478–80. https://doi.org/10.1016/j.fitote.2006.06.002

Article  CAS  PubMed  Google Scholar 

Patel M, Coogan MM. Antifungal activity of the plant Dodonaea viscosa var. angustifolia on Candida albicans from HIV-infected patients. J Ethnopharmacol. 2008;118:173–6. https://doi.org/10.1016/j.jep.2008.03.009

Article  PubMed  Google Scholar 

Rodriguez AD, Yoshida WY, Paul J, Scheuer PJ. Popolohuanone A and B. two new sesquiterpenoid aminoquinones from a pacific sponge Dysidea sp. Tetrahedron 1990;46:8025–30. https://doi.org/10.1016/S0040-4020(01)81459-9

Article  CAS  Google Scholar 

Yoo HD, Leung D, Sanghara J, Daley D, Soest R, Andersen RJ. Isoarenarol, A new protein kinase inhibitor from the marine sponge Dysidea arenaria. Pharm Biol. 2003;41:223–5. https://doi.org/10.1076/phbi.41.4.223.15679

Article  CAS  Google Scholar 

Tian K, Li XL, Zhang L, Gan YY, Meng J, Wu SQ, et al. Synthesis of novel indole derivatives containing double 1,3,4‑oxadiazole moiety as efficient bactericides against phytopathogenic bacterium Xanthomonas oryzae. Chem Pap. 2018;73:17–25. https://doi.org/10.1007/s11696-018-0555-y

Article  CAS  Google Scholar 

Faldu VJ, Talpara PK, Bhuva NH, Vachharajani PR, Shah VH. Synthesis, characterization and biological evaluation of some newer 5-[6-chloro/fluoro/nitro-2-(p-chloro/fluoro/methyl phenyl)-quinolin-4-yl]-1,3,4-oxadiazole-2-thiols. Inter Lett Chem Phys Astron. 2014;25:25–32..

Makane VB, Krishna VS, Krishna EV, Shukla M, Mahizhaveni B, Misra S, et al. Novel 1,3,4-oxadiazoles as antitubercular agents with limited activity against drug-resistant tuberculosis. Future Med Chem. 2019;11:499–10. https://doi.org/10.4155/fmc-2018-0378

Article  CAS  PubMed  Google Scholar 

Yarmohammadi E, Beyzaei H, Aryan R, Moradi A. Ultrasound‑assisted, low‑solvent and acid/base‑free synthesis of 5‑substituted 1,3,4‑oxadiazole‑2‑thiols as potent antimicrobial and antioxidant agents. Mol Divers. 2021;25:2367–78. https://doi.org/10.1007/s11030-020-10125-y

Article  CAS  PubMed  Google Scholar 

Taieb Brahimi F, Belkhadem F, Trari B, Othman AA. Diazole and triazole derivatives of castor oil extract: synthesis, hypoglycemic effect, antioxidant potential and antimicrobial activity. Grasas Aceites. 2020;71:e378 https://doi.org/10.3989/gya.0342191

Article  CAS  Google Scholar 

Radini IAM, Elsheikh TMY, El-Telbani EM, Khidre RE. New potential antimalarial agents: design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules. 2016;21:909 https://doi.org/10.3390/molecules21070909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gudipati R, Reddy Anreddy RN, Manda S. Synthesis, characterization and anticancer activity of certain 3-indolin-2-one derivatives. SA Pharm J. 2011;19:153–8. https://doi.org/10.1016/i.jsps.2011.03.002

Article  CAS  Google Scholar 

Pretsch E, Bühlmann P, Affolter C. Structure determination of organic compounds: tables of spectral data. Berlin: Springer; 2000. p. 7–12.

Book  Google Scholar 

Zaki RM, Abdul-Malik MA, Saber SH, Radwan SM, Kamal El-Dean AM. A convenient synthesis, reactions and biological evaluation of novel pyrazolo[3,4-b]selenolo[3,2-e]pyrazine heterocycles as potential anticancer and antimicrobial agents. Med Chem Res. 2020;25:2130–45. https://doi.org/10.1007/s00044-020-02635-z

Article  CAS  Google Scholar 

CASFM/EUCAST. Détermination de la sensibilité aux antibiotiques. Paris: Société Française de Microbiologie; 2019. p. 6–25.

Google Scholar 

Galisteo A, Jannus F, García-García A, Aheget H, Rojas S, Lupiañez JA, et al. Diclofenac N-derivatives as therapeutic agents with anti-inflammatory and anti-cancer effect. Int J Mol Sci. 2021;22:5067 https://doi.org/10.3390/ijms22105067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Griess P. Bemerkungen zu der Abhandlung der H.H. Weselsky und Benedikt Ueber einige Azoverbindungen. Ber Dtsch Chem Ges. 1879;12:426–8.

Article  Google Scholar 

Sonar SA, Lal G. The iNOS activity during an immune response controls the CNS pathology in experimental autoimmune encephalomyelitis. Front Immunol. 2019;10:710 https://doi.org/10.3389/fimmu.2019.00710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grottelli S, Amoroso R, Macchioni L, D’Onofrio F, Fettucciari K, Bellezza I, et al. Acetamidine-based iNOS inhibitors as molecular tools to counteract inflammation in BV2 microglial cells. Molecules. 2020;25:2646 https://doi.org/10.3390/molecules25112646

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koksal M, Dedeoglu-Erdogan A, Bader M, Gurdal EE, Sippl W, Reis R, et al. Design, synthesis, and molecular docking of novel 3,5-disubstituted-1,3,4-oxadiazole derivatives as iNOS inhibitors. Arch Pharm. 2021;354:2000469 https://doi.org/10.1002/ardp.202000469

Article  CAS  Google Scholar 

Wang JJ, Sun W, Jia WD, Bian M, Yu LJ. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: a mini-review. J Enzym Inhib Med Chem. 2022;37:2304–19. https://doi.org/10.1080/14756366.2022.2115036.

Article  Google Scholar 

Desai N, Monapara J, Jethawa A, Khedkar V, Shingate B. Oxadiazole: A highly versatile scaffold in drug discovery. Arch Pharm. 2022;355:2200123 https://doi.org/10.1002/ardp.202200123

Article  CAS  Google Scholar 

Faheem M, Althobaiti YS, Khan AW, Ullah A, Ali SH, Ilyas U. Investigation of 1, 3, 4 oxadiazole derivative in PTZ-induced neurodegeneration: a simulation and molecular approach. J Inflamm Res. 2021;14:5659–79. https://doi.org/10.2147/JIR.S328609

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong CH, Hur SK, Oh OJ, Kim SS, Nam KA, Lee SK. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol. 2002;83:153–9. https://doi.org/10.1016/s0378-8741(02)00205-2

Article  PubMed  Google Scholar 

Zhong HJ, Liu LJ, Chong CM, Lu L, Wang M, Chan DSH, et al. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One. 2014;9:e92905 https://doi.org/10.1371/journal.pone.0092905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kartasasmita R, Herowati R, Gusdinar T. Docking study of quercetin derivatives on inducible nitric oxide synthase and prediction of their absorption and distribution properties. J Appl Sci. 2010;10:3098–104. https://doi.org/10.3923/jas.2010.3098.3104

留言 (0)

沒有登入
gif