Recent miRNA Research in Asthma

Tarlo SM, Balmes J, Balkissoon R, Beach J, Beckett W, Bernstein D, et al. Diagnosis and management of work-related asthma: American College of Chest Physicians Consensus Statement. Chest. 2008;134(3 Suppl):1S-41S.

Article  CAS  PubMed  Google Scholar 

GAN. The Global Asthma Report. Vol. 9, Policy Studies. Auckland, New Zealand; 2018.

Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald JM, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143–78.

Article  CAS  PubMed  Google Scholar 

Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355(21):2226–35.

Article  CAS  PubMed  Google Scholar 

Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, et al. What did we learn from multiple omics studies in asthma? Allergy [Internet]. 2019;74(11):2129–45. Available from: https://doi.org/10.1111/all.13833.

Gautam Y, Johansson E, Mersha TB. Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm. J Pers Med. 2022 Jan 7;12(1):66. https://doi.org/10.3390/jpm12010066.

Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.

Article  CAS  PubMed  Google Scholar 

Hoefel G, Tay H, Foster P. MicroRNAs in lung diseases. Chest. 2019 Nov;156(5):991–1000. https://doi.org/10.1016/j.chest.2019.06.008. Epub 2019 Jun 27.

Ardekani AM, Naeini MM. The role of MicroRNAs in human diseases. Avicenna J Med Biotechnol. 2010;2(4):161–79.

Cañas JA, Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Exosomes: a key piece in asthmatic inflammation. Int J Mol Sci. 2021;22(2):963.

Article  PubMed  PubMed Central  Google Scholar 

Bélanger É, Madore A-M, Boucher-Lafleur A-M, Simon M-M, Kwan T, Pastinen T, et al. Eosinophil microRNAs play a regulatory role in allergic diseases included in the atopic march. Int J Mol Sci. 2020;21(23):9011.

Article  PubMed  PubMed Central  Google Scholar 

Tan BWQ, Sim WL, Cheong JK, Kuan WS, Tran T, Lim HF. MicroRNAs in chronic airway diseases: clinical correlation and translational applications. Pharmacol Res. 2020;160:105045.

Article  CAS  PubMed  Google Scholar 

Usman K, Hsieh A, Hackett T-L. The role of miRNAs in extracellular matrix repair and chronic fibrotic lung diseases. Cells. 2021;10(7):1706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adcock IM, Mumby S. MicroRNAs in human disease: commentary. Iran J Allergy Asthma Immunol. 2021;20(3):259–62.

Google Scholar 

Alashkar Alhamwe B, Potaczek DP, Miethe S, Alhamdan F, Hintz L, Magomedov A, et al. Extracellular vesicles and asthma-more than just a co-existence. Int J Mol Sci. 2021;22(9):4984.

Article  PubMed  PubMed Central  Google Scholar 

Cañas JA, Rodrigo-Muñoz JM, Sastre B, Gil-Martinez M, Redondo N, Del Pozo V. MicroRNAs as potential regulators of immune response networks in asthma and chronic obstructive pulmonary disease. Front Immunol. 2020;11:608666.

Article  PubMed  Google Scholar 

Paul S, Ruiz-Manriquez LM, Ledesma-Pacheco SJ, Benavides-Aguilar JA, Torres-Copado A, Morales-Rodríguez JI, et al. Roles of microRNAs in chronic pediatric diseases and their use as potential biomarkers: a review. Arch Biochem Biophys. 2021;699:108763.

Article  CAS  PubMed  Google Scholar 

Akbari Dilmaghnai N, Shoorei H, Sharifi G, Mohaqiq M, Majidpoor J, Dinger ME, et al. Non-coding RNAs modulate function of extracellular matrix proteins. Biomed Pharmacother. 2021;136:111240.

Article  CAS  PubMed  Google Scholar 

•• Calvén J, Ax E, Rådinger M. The airway epithelium–a central player in asthma pathogenesis. Int J Mol Sci. 2020;21(23):8907. Describes the miRNAs associated with virus induced asthma and role of airway epithelium.

Article  PubMed  PubMed Central  Google Scholar 

Benincasa G, DeMeo DL, Glass K, Silverman EK, Napoli C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur Respir J. 2021;57(6):2003406.

Article  CAS  PubMed  Google Scholar 

Shastri MD, Chong WC, Dua K, Peterson GM, Patel RP, Mahmood MQ, et al. Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators. Inflammopharmacology. 2021;29(1):15–33.

Article  PubMed  Google Scholar 

•• Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, et al. Spotlight on microRNAs in allergy and asthma. Allergy. 2021;76(6):1661–78. COMMENT: A good collection of miRNAs associated with Asthma.

Alashkar Alhamwe B, Miethe S, von Strandmann E, Potaczek DP, Garn H. Epigenetic regulation of airway epithelium immune functions in asthma. Front Immunol. 2020;11:1747.

Article  PubMed  PubMed Central  Google Scholar 

Ghafouri-Fard S, Shoorei H, Taheri M, Sanak M. Emerging role of non-coding RNAs in allergic disorders. Biomed Pharmacother. 2020;130:110615.

Article  CAS  PubMed  Google Scholar 

Casciaro M, Di Salvo E, Pioggia G, Gangemi S. Microbiota and microRNAs in lung diseases: mutual influence and role insights. Eur Rev Med Pharmacol Sci. 2020;24(24):13000–8.

CAS  PubMed  Google Scholar 

Kuruvilla ME, Lee FE-H, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–33.

Article  PubMed  PubMed Central  Google Scholar 

Trivedi M, Denton E. Asthma in children and adults—what are the differences and what can they tell us about asthma? Front Pediatr. 2019 Jun 25;7:256. https://doi.org/10.3389/fped.2019.00256.

Sood A, Qualls C, Schuyler M, Arynchyn A, Alvarado JH, Smith LJ, et al. Adult-onset asthma becomes the dominant phenotype among women by age 40 years. The longitudinal CARDIA study. Ann Am Thorac Soc. 2013 Jun;10(3):188–97. https://doi.org/10.1513/AnnalsATS.201212-115OC.

O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) [Internet]. 2018;9. Available from: https://doi.org/10.3389/fendo.2018.00402.

Liu X, Chen X, Yu X, Tao Y, Bode AM, Dong Z, et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res [Internet]. 2013;32(1):96. Available from: https://doi.org/10.1186/1756-9966-32-96.

Rodrigo-Muñoz JM, Cañas JA, Sastre B, Rego N, Greif G, Rial M, et al. Asthma diagnosis using integrated analysis of eosinophil microRNAs. Allergy. 2019;74(3):507–17.

Article  PubMed  Google Scholar 

Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in asthma and respiratory infections: identifying common pathways. Allergy Asthma Immunol Res. 2020;12(1):4–23.

Article  CAS  PubMed  Google Scholar 

Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;231(1):25–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab [Internet]. 2019/08/22. 2019;30(4):656–73. Available from: https://pubmed.ncbi.nlm.nih.gov/31447320.

Simpson CR, Sheikh A. Trends in the epidemiology of asthma in England: a national study of 333,294 patients. J R Soc Med. 2010 Mar;103(3):98–106. https://doi.org/10.1258/jrsm.2009.090348.

Ibrahim AA, Ramadan A, Wahby AA, Draz IH, El Baroudy NR, Abdel Hamid TA. Evaluation of miR-196a2 expression and Annexin A1 level in children with bronchial asthmaEvaluation of miR-196a2 expression and Annexin A1 level in children. Allergol Immunopathol (Madr). 2020;48(5):458–64.

Article  CAS  PubMed  Google Scholar 

Wang T, Zhou Q, Shang Y. Downregulation of miRNA-451a promotes the differentiation of CD4+ T cells towards Th2 cells by upregulating ETS1 in childhood asthma. J Innate Immun. 2021;13(1):38–48.

Article  PubMed  Google Scholar 

Wang AL, Li J, Kho AT, McGeachie MJ, Tantisira KG. Enhancing the prediction of childhood asthma remission: integrating clinical factors with microRNAs. J Allergy Clin Immunol. 2021;147(3):1093-1095.e1.

Article  PubMed  Google Scholar 

Tiwari A, Li J, Kho AT, Sun M, Lu Q, Weiss ST, et al. COPD-associated miR-145-5p is downregulated in early-decline FEV1 trajectories in childhood asthma. J Allergy Clin Immunol. 2021;147(6):2181–90.

Article  CAS  PubMed  Google Scholar 

Elnady HG, Sherif LS, Kholoussi NM, Ali Azzam M, Foda AR, Helwa I, et al. Aberrant expression of immune-related MicroRNAs in pediatric patients with asthma. Int J Mol Cell Med. 2020;9(4):246–55.

CAS  PubMed  Google Scholar 

Li W, Wang X, Sun S, An H. Long non-coding RNA colorectal neoplasia differentially expressed correlates negatively with miR-33a and miR-495 and positively with inflammatory cytokines in asthmatic children. Clin Respir J. 2021;15(11):1175–84.

Article  CAS  PubMed  Google Scholar 

Yin H, Liu MH, Gao F, Shang HM. Pro-inflammatory and pro-fibrotic role of long non-coding RNA RMRP in pediatric asthma through targeting microRNA-206/CCL2 axis. J Biol Regul Homeost Agents. 2021;35(1):71–83.

CAS  PubMed  Google Scholar 

Tiwari A, Wang AL, Li J, Lutz SM, Kho AT, Weiss ST, et al. Seasonal variation in miR-328-3p and let-7d-3p are associated with seasonal allergies and asthma symptoms in children. Allergy Asthma Immunol Res. 2021;13(4):576–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma S, Kho AT, Chhabra D, Haley K, Vyhlidal C, Gaedigk R, et al. Effect of intrauterine smoke exposure on microRNA-15a expression in human lung development and subsequent asthma risk. Healthc. 2020;8(4):536.

Article  Google Scholar 

Zhai C, Wang D. Baicalin regulates the development of pediatric asthma via upregulating microRNA-103 and mediating the TLR4/NF-κB pathway. J Recept Signal Transduct Res. 2021;1–11.

Dong J, Sun D, Lu F. Association of two polymorphisms of miRNA-146a rs2910164 (G > C) and miRNA-499 rs3746444 (T > C) with asthma: a meta-analysis. J Asthma. 2021;58(8):995–1002.

Article  CAS  PubMed  Google Scholar 

Rahbarghazi R, Keyhanmanesh R, Rezaie J, Mirershadi F, Heiran H, Saghaei Bagheri H, et al. c-kit+ cells offer hopes in ameliorating asthmatic pathologies via regulation of miRNA-133 and miRNA-126. Iran J Basic Med Sci. 2021;24(3):369–76.

PubMed  PubMed Central  Google Scholar 

Wang K, Zhu H, Yang L, Xu Q, Ren F. miR-139 promotes homing of bone marrow mesenchymal stem cells (BMSCs) to lung tissues of asthmatic rats to inhibit inflammatory response of Th2 cells by down-regulating Notch1/Hes1 pathway. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2021;37(2):97–104.

CAS 

留言 (0)

沒有登入
gif