Coaxial electrospinning synthesis of size-tunable CuO/NiO hollow heterostructured nanofibers: Towards detection of glucose level in human serum

Nanofibers (NFs) have found wide applications by virtue of their particular morphology and high specific surface area. In this study, size-tunable hollow CuO/NiO NFs were synthesized by coaxial electrospinning and subsequent calcination. The synthesized hollow CuO/NiO NFs owned large specific surface area for catalytic active sites. In addition, the formation of heterostructure interface between CuO and NiO was beneficial to improve the electrocatalytic performance. As non-enzymatic electrode material, the synthesized CuO/NiO NFs exhibited superior electrocatalytic capability for glucose oxidation. When the molar ratio of CuO to NiO is 0.4, the composite NFs achieved the optimal electrocatalytic ability for glucose oxidation, performing high sensitivity of 1324.17 μA mM−1 cm−2 and wide liner range from 1 to 10,000 μM. The constructed electrode has been utilized to detect glucose concentration in real serum with excellent recovery, indicating that CuO/NiO hollow heterostructured NFs are promising materials for biomedical applications.

留言 (0)

沒有登入
gif