Hemodynamic impacts of apelin-13 in a neonatal lamb model of septic peritonitis

Shane, A. L., Sánchez, P. J. & Stoll, B. J. Neonatal sepsis. Lancet 390, 1770–1780 (2017).

Article  PubMed  Google Scholar 

Macarthur, H., Westfall, T. C., Riley, D. P., Misko, T. P. & Salvemini, D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc. Natl Acad. Sci. USA 97, 9753–9758 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreis, D. T. & Singer, M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 42, 1387–1397 (2016).

Article  CAS  PubMed  Google Scholar 

Dempsey, E. & Rabe, H. The use of cardiotonic drugs in neonates. Clin. Perinatol. 46, 273–290 (2019).

Article  PubMed  Google Scholar 

Weiss, S. L. et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 46, 10–67 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwarz, C. E. & Dempsey, E. M. Management of neonatal hypotension and shock. Semin. Fetal Neonatal Med. 25, 101121 (2020).

Article  PubMed  Google Scholar 

Coquerel, D. et al. Apelin-13 in septic shock: effective in supporting hemodynamics in sheep but compromised by enzymatic breakdown in patients. Sci. Rep. 11, 22770 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan, C. S. et al. Apelin antagonizes myocardial impairment in sepsis. J. Card. Fail. 16, 609–617 (2010).

Article  CAS  PubMed  Google Scholar 

Maguire, J. J., Kleinz, M. J., Pitkin, S. L. & Davenport, A. P. [Pyr1]Apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54, 598–604 (2009).

Article  CAS  PubMed  Google Scholar 

Chapman, N. A., Dupré, D. J. & Rainey, J. K. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class a GPCR. Biochem. Cell Biol. 92, 431–440 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boulkeroua, C. et al. Apelin-13 regulates vasopressin-induced aquaporin-2 expression and trafficking in kidney collecting duct cells. Cell. Physiol. Biochem. 53, 687–700 (2019).

Article  CAS  PubMed  Google Scholar 

Coquerel, D. et al. The apelinergic system as an alternative to catecholamines in low-output septic shock. Crit. Care 22, 10 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Weiss, J. L., Frederiksen, J. W. & Weisfeldt, M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J. Clin. Investig. 58, 751–760 (1976).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosse, D. et al. Experimental validation of cardiac index measurement using transpulmonary thermodilution technique in neonatal total liquid ventilation. ASAIO J. 56, 557–562 (2010).

Article  PubMed  Google Scholar 

Sage, M. et al. Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome. PLoS One 13, e0191885 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Argueta, E. E. & Paniagua, D. Thermodilution cardiac output: a concept over 250 years in the making. Cardiol. Rev. 27, 138–144 (2019).

Article  PubMed  Google Scholar 

Rittirsch, D., Huber-Lang, M. S., Flierl, M. A. & Ward, P. A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31–36 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rehberg, S. et al. Effects of combined arginine vasopressin and levosimendan on organ function in ovine septic shock. Crit. Care Med. 38, 2016–2023 (2010).

Article  CAS  PubMed  Google Scholar 

Kato, T. et al. Development and characterization of a novel porcine model of neonatal sepsis. Shock 21, 329–335 (2004).

Article  PubMed  Google Scholar 

Wynn, J. L. & Wong, H. R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 37, 439–479 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Davis, A. L. et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit. Care Med. 45, 1061–1093 (2017).

Article  PubMed  Google Scholar 

Coquerel, D. et al. Elabela improves cardio-renal outcome in fatal experimental septic shock. Crit. Care Med. 45, e1139–e1148 (2017).

Article  PubMed  Google Scholar 

Sahinturk, S., Demirel, S., Ozyener, F. & Isbil, N. [Pyr1]Apelin-13 relaxes the rat thoracic aorta via APJ, NO, AMPK, and potassium channels. Gen. Physiol. Biophys. 40, 427–434 (2021).

Article  CAS  PubMed  Google Scholar 

Chagnon, F. et al. Apelin compared with dobutamine exerts cardioprotection and extends survival in a rat model of endotoxin-induced myocardial dysfunction. Crit. Care Med. 45, e391–e398 (2017).

Article  CAS  PubMed  Google Scholar 

Mughal, A., Sun, C. & O’Rourke, S. T. Apelin does not impair coronary artery relaxation mediated by nitric oxide-induced activation of Bk(Ca) channels. Front. Pharmacol. 12, 679005 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif