A critical review on natural surfactants and their potential for sustainable mineral flotation

Abdel-Khalek NA, Yassin KE, Selim KA et al (2012) Effect of starch type on selectivity of cationic flotation of iron ore. Trans Inst Min Metall Sect C Miner Process Extr Metall 121:98–102. https://doi.org/10.1179/1743285512Y.0000000001

Article  CAS  Google Scholar 

Ahmed MM, Ibrahim GA, Hassan MMA (2007) Improvement of Egyptian talc quality for industrial uses by flotation process and leaching. Int J Miner Process 83:132–145. https://doi.org/10.1016/j.minpro.2007.07.002

Article  CAS  Google Scholar 

Ambaye TG, Vaccari M, van Hullebusch ED et al (2021) Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol 18:3273–3294. https://doi.org/10.1007/s13762-020-03060-w

Article  CAS  Google Scholar 

An D, Zhang X, Liang F et al (2019) Synthesis, surface properties of glucosyl esters from renewable materials for use as biosurfactants. Colloids Surf A Physicochem Eng Asp 577:257–264. https://doi.org/10.1016/j.colsurfa.2019.05.079

Article  CAS  Google Scholar 

Araujo AC, Viana PRM, Peres AEC (2005) Reagents in iron ores flotation. Miner Eng 18:219–224. https://doi.org/10.1016/j.mineng.2004.08.023

Article  CAS  Google Scholar 

Augustin JM, Kuzina V, Andersen SB, Bak S (2011) Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 72:435–457. https://doi.org/10.1016/j.phytochem.2011.01.015

Article  CAS  Google Scholar 

Augustyn AR, Pott RWM, Tadie M (2021) The interactions of the biosurfactant surfactin in coal flotation. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.127122

Article  Google Scholar 

Aytar Çelik P, Çakmak H, Öz Aksoy D (2021) Green bioflotation of calcite using surfactin as a collector. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2021.1979999

Article  Google Scholar 

Baba WN, McClements DJ, Maqsood S (2021) Whey protein–polyphenol conjugates and complexes: production, characterization, and applications. Food Chem 365:130455. https://doi.org/10.1016/j.foodchem.2021.130455

Article  CAS  Google Scholar 

Banat IM, Carboué Q, Saucedo-Castañeda G, de Jesús Cázares-Marinero J (2021) Biosurfactants: the green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124222

Article  Google Scholar 

Behera SK, Mulaba-Bafubiandi AF (2017) Microbes assisted mineral flotation a future prospective for mineral processing industries: a review. Miner Process Extr Metall Rev 38:96–105. https://doi.org/10.1080/08827508.2016.1262861

Article  CAS  Google Scholar 

Bergström LM (2015) Explaining the growth behavior of surfactant micelles. J Colloid Interface Sci 440:109–118. https://doi.org/10.1016/j.jcis.2014.10.054

Article  CAS  Google Scholar 

Bezerra KGO, Silva IGS, Almeida FCG et al (2021) Plant-derived biosurfactants: extraction, characteristics and properties for application in cosmetics. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2021.102036

Article  Google Scholar 

Bhadani A, Kafle A, Ogura T et al (2020) Current perspective of sustainable surfactants based on renewable building blocks. Curr Opin Colloid Interface Sci 45:124–135. https://doi.org/10.1016/j.cocis.2020.01.002

Article  CAS  Google Scholar 

Bialy Z, Jurzysta M, Mella M, Tava A (2006) Triterpene saponins from the roots of Medicago hybrida. J Agric Food Chem 54:2520–2526. https://doi.org/10.1021/jf0581628

Article  CAS  Google Scholar 

Bognolo G (1999) Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf A Physicochem Eng Asp 152:41–52. https://doi.org/10.1016/S0927-7757(98)00684-0

Article  CAS  Google Scholar 

Bremmell KE, Jameson GJ, Biggs S (1999) Adsorption of ionic surfactants in particulate systems: flotation, stability, and interaction forces. Colloids Surf A Physicochem Eng Asp 146:75–87. https://doi.org/10.1016/S0927-7757(98)00802-4

Article  CAS  Google Scholar 

Brück HL, Delvigne F, Dhulster P et al (2019) Molecular strategies for adapting Bacillus subtilis 168 biosurfactant production to biofilm cultivation mode. Bioresour Technol 293:122090. https://doi.org/10.1016/j.biortech.2019.122090

Article  CAS  Google Scholar 

Bu X, Chen F, Chen W, Ding Y (2019) The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system. Appl Surf Sci 479:303–310. https://doi.org/10.1016/j.apsusc.2019.02.113

Article  CAS  Google Scholar 

Cao Q, Cheng J, Wen S et al (2015) A mixed collector system for phosphate flotation. Miner Eng 78:114–121. https://doi.org/10.1016/j.mineng.2015.04.020

Article  CAS  Google Scholar 

Cayllahua JEB, Torem ML (2011) Biosorptive flotation of nickel and aluminum ions from aqueous solution. Desalination 279:195–200. https://doi.org/10.1016/j.desal.2011.06.030

Article  CAS  Google Scholar 

Chang Z, Chen X, Peng Y (2017) Understanding and improving the flotation of coals with different degrees of surface oxidation. Powder Technol 321:190–196. https://doi.org/10.1016/j.powtec.2017.08.025

Article  CAS  Google Scholar 

Chang Z, Chen X, Peng Y (2018) The adsorption behavior of surfactants on mineral surfaces in the presence of electrolytes—a critical review. Miner Eng 121:66–76. https://doi.org/10.1016/j.mineng.2018.03.002

Article  CAS  Google Scholar 

Chernyshova IV, Ponnurangam S, Somasundaran P (2011) Adsorption of fatty acids on iron (hydr)oxides from aqueous solutions. Langmuir 27:10007–10018. https://doi.org/10.1021/la2017374

Article  CAS  Google Scholar 

Chiodza KG, Harrison STL, Fagan-Endres MA (2020) Algal lipids as biocollector for recovery of coal from fine coal waste by Froth Flotation. Minerals 10:11–14. https://doi.org/10.3390/min10010070

Article  CAS  Google Scholar 

Chipakwe V, Sand A, Chelgani SC (2022) Nanobubble assisted flotation separation of complex Pb–Cu–Zn sulfide ore–assessment of process readiness. Sep Sci Technol 57:1351–1358. https://doi.org/10.1080/01496395.2021.1981942

Article  CAS  Google Scholar 

Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582. https://doi.org/10.1128/cmr.12.4.564

Article  CAS  Google Scholar 

Cuba-Chiem LT, Huynh L, Ralston J et al (2008) In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics. Langmuir 24:8036–8044. https://doi.org/10.1021/la800490t

Article  CAS  Google Scholar 

Dai Z, Fornasiero D, Ralston J (2000) Particle-bubble collision models—a review. Adv Colloid Interface Sci 85:231–256. https://doi.org/10.1016/S0001-8686(99)00030-5

Article  CAS  Google Scholar 

Danouche M, El Arroussi H, El Ghachtouli N (2021a) Mycoremediation of synthetic dyes by yeast cells: a sustainable biodegradation approach. Environ Sustain 4:5–22. https://doi.org/10.1007/s42398-020-00150-w

Article  CAS  Google Scholar 

Danouche M, Ferioun M, Bahafid W, El Ghachtouli N (2021b) Mycoremediation of azo dyes using Cyberlindnera fabianii yeast strain: application of designs of experiments for decolorization optimization. Water Environ Res 93(8):1402–1416. https://doi.org/10.1002/wer.1499

Article  CAS  Google Scholar 

Danouche M, El Arroussi H, El Ghachtouli N (2022) Bioremoval of Acid Red 14 dye by Wickerhamomyces anomalus biomass: kinetic and thermodynamic study, characterization of physicochemical interactions, and statistical optimization of the biosorption process. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02711-x

Article  Google Scholar 

Das AJ, Kumar R (2018) Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresour Technol 260:233–240. https://doi.org/10.1016/j.biortech.2018.03.093

Article  CAS  Google Scholar 

De S, Malik S, Ghosh A, Saha R et al (2015) A review on natural surfactants. RSC Adv 5(81):65757–65767. https://doi.org/10.1039/C5RA11101C

Article  CAS  Google Scholar 

De Oliveira P, Mansur H, Mansur A et al (2019) Apatite flotation using pataua palm tree oil as collector. J Mater Res Technol 8:4612–4619. https://doi.org/10.1016/j.jmrt.2019.08.005

Article  CAS  Google Scholar 

De Oliveira AC, Baltar CAM (2020) Influenceregulator onof thethe dolomiteph hydrophobization process. Rev Esc Minas 73:403–409. https://doi.org/10.1590/0370-44672019730136

Article  Google Scholar 

Derhy M, Taha Y, Benzaazoua M et al (2022) Assessment of the selective flotation of calcite, apatite and quartz using bio-based collectors: FLAXSEED, nigella, and olive oils. Miner Eng 182:107589. https://doi.org/10.1016/j.mineng.2022.107589

Article  CAS  Google Scholar 

Dhar P, Havskjold H, Thornhill M et al (2021) Toward green flotation: interaction of a sophorolipid biosurfactant with a copper sulfide. J Colloid Interface Sci 585:386–399. https://doi.org/10.1016/j.jcis.2020.11.079

Article  CAS  Google Scholar 

Díaz-López CV, Pecina-Treviño ET, Orrantia-Borunda E (2012) A study of bioflotation of chalcopyrite and pyrrhotite mixtures in presence of L. Ferrooxidans. Can Metall Q 51:118–125. https://doi.org/10.1179/0008443312Z.00000000025

Article  Google Scholar 

Didyk AM, Sadowski Z (2012) Flotation of serpentinite and quartz using biosurfactants. Physicochem Probl Miner Process 48:607–618. https://doi.org/10.5277/ppmp120224

Article  CAS  Google Scholar 

Domínguez Rivera Á, Martínez Urbina MÁ, López y López VE (2019) Advances on research in the use of agro-industrial waste in biosurfactant production. World J Microbiol Biotechnol 35:1–18. https://doi.org/10.1007/s11274-019-2729-3

Article  CAS  Google Scholar 

Du K-Z, Li J, Wang L et al (2020) Biosurfactant trehalose lipid-enhanced ultrasound-assisted micellar extraction and determination of the main antioxidant compounds from functional plant tea. J Sep Sci 43:799–807. https://doi.org/10.1002/jssc.201900910

Article  CAS  Google Scholar 

Dwyer R, Bruckard WJ, Rea S, Holmes RJ (2012) Bioflotation and bioflocculation review: microorganisms relevant for mineral beneficiation. Trans Inst Min Metall Sect C Miner Process Extr Metall 121:65–71. https://doi.org/10.1179/1743285512Y.0000000005

留言 (0)

沒有登入
gif