High production of acetoin from glycerol by Bacillus subtilis 35

Bao T, Zhang X, Rao Z, Zhao X, Zhang R, Yang T, Xu Z, Yang S (2019) Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. Plos One 9:e102951. https://doi.org/10.1371/journal.pone.0102951

Article  CAS  Google Scholar 

Borriss R, Danchin A, Harwood CR, Médigue C, Rocha EPC, Sekowska A, Vallenet D (2018) Bacillus subtilis, the model gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol 11(1):3–17. https://doi.org/10.1111/1751-7915.13043

Article  PubMed  Google Scholar 

Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28. https://doi.org/10.1016/j.tibtech.2012.10.006

Article  CAS  PubMed  Google Scholar 

Cui X, Zhao X, Liu D (2018) A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3- butanediol as feedstocks. Green Chem 20:2018–2026. https://doi.org/10.1039/C8GC00292D

Article  CAS  Google Scholar 

Dai JY, Cheng L, He QF, Xiu ZL (2015) High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply. Proc Biochem 50:1730–1734. https://doi.org/10.1016/j.procbio.2015.07.010

Article  CAS  Google Scholar 

Dai JY, Wang Z, Xiu ZL (2019) High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141. Bioproc Biosyst Eng 42:475–483. https://doi.org/10.1007/s00449-018-2051-8

Article  CAS  Google Scholar 

Fan X, Wu H, Jia Z, Li G, Li Q, Chen N, Xie X (2018) Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin. Appl Microbiol Biotechnol 102:8753–8762. https://doi.org/10.1007/s00253-018-9316-7

Article  CAS  PubMed  Google Scholar 

Forage RG, Lin EC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599. https://doi.org/10.1128/jb.151.2.591-599.1982

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glatz E, Nilsson RP, Rutberg L, Rutberg B (1996) A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability. Mol Microbiol 19:319–328. https://doi.org/10.1046/j.1365-2958.1996.376903.x

Article  CAS  PubMed  Google Scholar 

Hakizimana O, Matabaro E, Lee BH (2020) The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. Biotechnol Reports 25:e00397. https://doi.org/10.1016/j.btre.2019.e00397

Article  Google Scholar 

Jia X, Peng X, Liu Y, Han Y (2017) Conversion of cellulose and hemicellulose of biomass simultaneously to acetoin by thermophilic simultaneous saccharification and fermentation. Biotechnol Biofuels 10:232. https://doi.org/10.1186/s13068-017-0924-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kallbach M, Horn S, Kuenz A, Prusse U (2017) Screening of novel bacteria for the 2,3-butanediol production. Appl Microbiol Biotechnol 101:1025–1033. https://doi.org/10.1007/s00253-016-7849-1

Article  CAS  PubMed  Google Scholar 

Kosamia NM, Samavi M, Uprety BK, Rakshit SK (2020) Valorization of biodiesel byproduct crude glycerol for the production of bioenergy and biochemicals. Catalysts 10(6):609. https://doi.org/10.3390/catal10060609

Article  CAS  Google Scholar 

Koutinas AA, Yepez B, Kopsahelis N, Freire DMG, de Castro AM, Papanikolaou S, Kookos IK (2016) Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources. Bioresour Technol 204:55–64. https://doi.org/10.1016/j.biortech.2015.12.005

Article  CAS  PubMed  Google Scholar 

Liu Z, Qin J, Gao C, Hua D, Ma C, Li L, Wang Y, Xu P (2011) Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis. Bioresour Technol 102:10741–10744. https://doi.org/10.1016/j.biortech.2011.08.110

Article  CAS  PubMed  Google Scholar 

Maina S, Mallouchos A, Nychas GJE, Freire DM, de Castro AM, Papanikolaou S, Kookos IK, Koutinas A (2019) Bioprocess development for (2R,3R)-butanediol and acetoin production using very high polarity cane sugar and sugarcane molasses by a Bacillus amyloliquefaciens strain. J Chem Technol Biotechnol 94:2167–2177. https://doi.org/10.1002/jctb.5997

Article  CAS  Google Scholar 

Maina S, Schneider R, Alexandri M, Papapostolou H, Nychas GJ, Koutinas A, Venus J (2021) Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste. Bioresour Technol 335:125155. https://doi.org/10.1016/j.biortech.2021.125155

Article  CAS  PubMed  Google Scholar 

Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V (2022) Prospects on bio-based 2,3-butanediol and acetoin production: recent progress and advances. Biotechnol Adv 54:107783. https://doi.org/10.1016/j.biotechadv.2021.107783

Article  CAS  PubMed  Google Scholar 

Meng W, Ma C, Xu P, Gao C (2022) Biotechnological production of chiral acetoin. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2022.01.008

Article  PubMed  Google Scholar 

Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR (1985) A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen-transport. Biotechnol Bioeng 27:482–489. https://doi.org/10.1002/bit.260270413

Article  CAS  PubMed  Google Scholar 

Okonkwo CC, Ujor V, Ezeji TC (2017) Investigation of relationship between 2,3-butanediol toxicity and production during growth of Paenibacillus polymyxa. New Biotechnol 34:23–31. https://doi.org/10.1016/j.nbt.2016.10.006

Article  CAS  Google Scholar 

Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84:659–665. https://doi.org/10.1007/s00253-009-2004-x

Article  CAS  PubMed  Google Scholar 

Petrov K, Petrova P (2021) Current advances in microbial production of acetoin and 2,3-butanediol by Bacillus spp. Fermentation 7:307. https://doi.org/10.3390/fermentation7040307

Article  CAS  Google Scholar 

Petrova P, Petlichka S, Petrov K (2020) New Bacillus spp. with potential for 2,3-butanediol production from biomass. J Biosci Bioeng 130:20–28. https://doi.org/10.1016/j.jbiosc.2020.02.009

Article  CAS  PubMed  Google Scholar 

Song CW, Rathnasingh C, Park JM, Lee J, Song H (2018) Isolation and evaluation of Bacillus strains for industrial production of 2,3-butanediol. J Microbiol Biotechnol 28:409–417. https://doi.org/10.4014/jmb.1710.10038

Article  CAS  PubMed  Google Scholar 

Tian Y, Fan Y, Liu J, Zhao X, Chen W (2016) Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electron J Biotechnol 19:41–49. https://doi.org/10.1016/j.ejbt.2015.11.005

Article  Google Scholar 

Vikromvarasiri N, Shirai T, Kondo A (2021) Metabolic engineering design to enhance (R, R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis. Microb Cell Fact 20:196. https://doi.org/10.1186/s12934-021-01688-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Tao F, Xin B, Liu H, Gao Y, Zhou NY, Xu P (2017) Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metab Eng 39:90–101. https://doi.org/10.1016/j.ymben.2016.10.020

Article  CAS  PubMed  Google Scholar 

Windhorst C, Gescher J (2019) Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16. Biotechnol Biofuels 12:163. https://doi.org/10.1186/s13068-019-1512-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao Z, Lu JR (2014) Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 32:492–503. https://doi.org/10.1016/j.biotechadv.2014.01.002

Article  CAS  PubMed  Google Scholar 

Xiao Z, Xu P (2007) Acetoin metabolism in bacteria. Crit Rev Microbiol 33:127–140. https://doi.org/10.1080/10408410701364604

Article  CAS  PubMed  Google Scholar 

Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2015) Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact 14:122. https://doi.org/10.1186/s12934-015-0317-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2017) Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 37:990–1005. https://doi.org/10.1080/07388551.2017.1299680

Article  CAS  PubMed  Google Scholar 

Zeng AP, Biebl H, Deckwer WD (1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl Microbiol Biotechnol 33:485–489. https://doi.org/10.1007/BF00172538

Article  CAS  Google Scholar 

Zhang X, Yang TW, Lin Q, Xu MJ, Xia HF, Xu ZH, Li HZ, Rao ZM (2011) Isolation and identification of an acetoin high production bacterium that can reverse transform 2,3-butanediol to acetoin at the decline phase of fermentation. World J Microbiol Biotechnol 27:2785–2790. https://doi.org/10.1007/s11274-011-0754-y

Article  CAS  Google Scholar 

Zhang X, Zhang R, Bao T, Rao Z, Yang T, Xu M, Xu Z, Li H, Yang S (2014) The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng 23:34–41. https://doi.org/10.1016/j.ymben.2014.02.002

Article 

留言 (0)

沒有登入
gif