Long-term storage does not affect the infectivity of entomopathogenic nematodes on insect hosts

Alkenani NA, Al-Ghamdi KHM, Saleh MS, Mahyuob JA (2015) Semi-field evaluation of some slow-release insecticide formulation against the dengue mosquito Aedes aegypti (L). Alex Sci Exch J 36:157–162. https://doi.org/10.1016/j.sjbs.2018.06.006

Article  CAS  Google Scholar 

Castillo JC, Reynolds SE, Eleftherianos I (2011) Insect immune responses to nematode parasites. Trends Parasitol 27:537–547. https://doi.org/10.1016/j.pt.2011.09.001

Article  CAS  PubMed  Google Scholar 

Chen S, Glazer I (2005) A novel method for long-term storage of the entomopathogenic nematode Steinernema feltiae at room temperature. Biol Control 32:104–110. https://doi.org/10.1016/j.biocontrol.2004.08.006

Article  CAS  Google Scholar 

Cagnolo SR, Almiron WL (2017) Capacity of the terrestrial entomopathogenic nematode Steinernema rarum (Rhabditida: Steinernematidae) to parasite Culex apicinus larvae (Diptera: Culicidae). Rev Soc Entomol Arge 69:1–2

Google Scholar 

Dilipkumar A, Ramalingam KR, Chinnaperumal K, Govindasamy B, Paramasivam D, Dhayalan A, Pachiappan P (2019) Isolation and growth inhibition potential of entomopathogenic nematodes against three public health important mosquito vectors. Exp Parasitol 197:76–84. https://doi.org/10.1016/j.exppara.2018.11.001

Article  PubMed  Google Scholar 

Devi G (2019) Interaction between entomopathogenic nematodes and entomopathogenic fungi in biocontrol mechanism. J EntomolZool Stud 7:959–964

Google Scholar 

Eivazian Kary N, Chahardoli S, Mohammadi D, Dillon AB (2018) Effects of abiotic factors on the osmotic response of alginate-formulated entomopathogenic nematode, Heterorhabditis bacteriophora (Nematoda: Rhabditida). Biocontrol Sci Technol 28:688–701. https://doi.org/10.1080/09583157.2018.1479731

Article  Google Scholar 

Eleftherianos I, Clarke DJ, Dowling AJ, Reynolds SE (2010) Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol 18:552–560. https://doi.org/10.1016/j.tim.2010.09.006

Article  CAS  PubMed  Google Scholar 

Ehlers RU, Premachandra D, Berndt O, Poehling HM, Borgemeister C (2003) Laboratory bioassays of virulence of entomopathogenic nematodes against soil-inhabiting stages of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Nematology 5:539–547

Article  Google Scholar 

Ferreira T, Malan AP (2014) Potential of entomopathogenic nematodes for the control of the banded fruit weevil, Phlyctinus callosus (Schonherr) (Coleoptera: Curculionidae). J Helminthol 88:293–301. https://doi.org/10.1017/S0022149X13000175

Article  CAS  PubMed  Google Scholar 

Georgis R (1990) Formulation and application technology. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp 173–194

Google Scholar 

Grewal PS, Wang X, Taylor RAJ (2002) Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? Int J Parasitol 32:717–725. https://doi.org/10.1016/S0020-7519(02)00029-2

Article  CAS  PubMed  Google Scholar 

Gaugler R, Boush GM (1978) Effects of ultraviolet radiation and sunlight on the entomogenous nematode, Neoaplectana carpocapsae. J Invertebr Pathol 32:291–296. https://doi.org/10.1016/0022-2011(78)90191-X

Article  Google Scholar 

Heriberto CM, Jaime RV, Carlos CM, Jesusita RD (2017) Formulation of entomopathogenic nematodes for crop pest control–a review. Plant Protect Sci 53:15–24. https://doi.org/10.17221/35/2016-PPS

Article  Google Scholar 

Hiltpold I, Hibbard BE, French BW, Turlings TC (2012) Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant Soil 358:11–25. https://doi.org/10.1007/s11104-012-1253-0

Article  CAS  Google Scholar 

Hussein MA, Abdel-Aty MA (2012) Formulation of two native entomopathogenic nematodes at room temperature. J Biopestici 5:23–27

CAS  Google Scholar 

Jaffuel G, Sbaiti I, Turlings TC (2020) Encapsulated entomopathogenic nematodes can protect maize plants from Diabrotica balteata larvae. Insects 11:27. https://doi.org/10.3390/insects11010027

Article  Google Scholar 

Kapranas A, Sbaiti I, Degen T, Turlings TC (2020) Biological control of cabbage fly Delia radicum with entomopathogenic nematodes: selecting the most effective nematode species and testing a novel application method. Biol Cont 144:104212. https://doi.org/10.1016/j.biocontrol.2020.104212

Article  CAS  Google Scholar 

Kusakabe A, Peterson BF, Orduño BR, Stock SP (2019) Ecological characterization of Heterorhabditis sonorensis (Caborca strain) (Nematoda: Heterorhabditidae), an entomopathogenic nematode from the Sonoran desert. Zoology 135:125689. https://doi.org/10.1016/j.zool.2019.05.001

Article  PubMed  Google Scholar 

Kim J, Jaffuel G, Turlings TC (2015) Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. Bio Control 60:527–535. https://doi.org/10.1007/s10526-014-9638-z

Article  CAS  Google Scholar 

Kaya HK, Nelsen CE (1985) Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: a new approach for insect control and other applications. Environ Entomol 14:572–574. https://doi.org/10.1093/ee/14.5.572

Article  Google Scholar 

Lang AE, Schmidt G, Sheets JJ, Aktories K (2011) Targeting of the actin cytoskeleton by insecticidal toxins from Photorhabdus luminescens. N-S Arch Pharmacol 383:227–235. https://doi.org/10.1007/s00210-010-0579-5

Article  CAS  Google Scholar 

Lee YW, Zairi J, Yap HH, Adanan CR (2005) Integration of Bacillus thuringiensis H-14 formulations and pyriproxyfen for the control of larvae of Aedes aegypti and Aedes albopictus. J Am Mosquito Contr 21:84–89. https://doi.org/10.2987/8756-971X(2005)21[84:IOBTHF]2.0.CO;2

Article  CAS  Google Scholar 

Mbata GN, Ivey C, Shapiro-Ilan D (2018) The potential for using entomopathogenic nematodes and fungi in the management of the maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae). Biol Control 125:39–43. https://doi.org/10.1016/j.biocontrol.2018.06.008

Article  Google Scholar 

Mohiddin A, Lasim AM, Zuharah WF (2016) Susceptibility of Aedes albopictus from dengue outbreak areas to temephos and Bacillus thuringiensis subsp israelensis. Asian Pac J Trop Biomed 6:295–300. https://doi.org/10.1016/j.apjtb.2016.01.006

Article  CAS  Google Scholar 

Maiwald M, Ditton HJ, Sonntag HG, von Knebel DM (1994) Characterization of contaminating DNA in Taq polymerase which occurs during amplification with a primer set for Legionella 5S ribosomal RNA. Mol Cell Probe 8:11–14. https://doi.org/10.1006/mcpr.1994.1002

Article  CAS  Google Scholar 

Niknam G, Kary NE, Nikdel M, Griffin C (2010) Diversity of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) from Arasbaran forests and range lands in north-west Iran. Nematology 12:767773

Google Scholar 

Navon A, Keren S, Salame L, Glazer I (1998) An edible-to-insects calcium alginate gel as a carrier for entomopathogenic nematodes. Biocontrol Sci Technol 8:429–437

Article  Google Scholar 

Orozco RA, Lee MM, Stock SP (2014) Soil sampling and isolation of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). JoVE- J vis Exp 89:e52083. https://doi.org/10.3791/52083

Article  Google Scholar 

Pour MM, Saberi-Riseh R, Mohammadinejad R, Hosseini A (2019) Investigating the formulation of alginate-gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17–4 strains) for controlling Fusarium solani on potato. Int J Biol Macromol 133:603–613. https://doi.org/10.1016/j.ijbiomac.2019.04.071

Article  CAS  PubMed  Google Scholar 

Peschiutta ML, Cagnolo SR, Almiron WR (2014) Susceptibility of larvae of Aedes aegypti (Linnaeus) (Diptera: Culicidae) to entomopathogenic nematode Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae). Rev Soc Entomol Arge 73:99–108

Google Scholar 

Pandii W, Maharmart S, Boonchuen S, Silapanuntakul S, Somsook V (2008) Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) against Culex gelidus (Diptera: Culicidae) larvae. J Vector Born Dis 5:24–35

Google Scholar 

Poinar GO Jr, Kaul HN (1982) Parasitism of the mosquito Culex pipiens by the nematode Heterorhabditis bacteriophora. J Invertebr Pathol 39:382–387. https://doi.org/10.1016/0022-2011(82)90063-5

Article  Google Scholar 

Qiu LH, Lacey MJ, Bedding RA (2000) Permeability of the infective juveniles of Steinernema carpocapsae to glycerol during osmotic dehydration and its effect on biochemical adaptation and energy metabolism. Com Biochem Phys B 125:411–419

Article  CAS  Google Scholar 

Shapiro-Ilan DI, Han R, Qiu X (2014) Production of entomopathogenic nematodes. Mass production of beneficial organisms. Academic Press, pp 321–355

Chapter  Google Scholar 

Shapiro-Ilan DI, Han R, Dolinksi C (2012) Entomopathogenic nematode production and application technology. J Nematol 44:206–217

PubMed  PubMed Central  Google Scholar 

Smallegange RC, Schmied WH, van Roey KJ, Verhulst NO, Spitzen J, Mukabana WR, Takken W (2010) Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J 9:292

Article  PubMed  PubMed Central  Google Scholar 

Schroer S, Ziermann D, Ehlers RU (2005) Mode of action of a surfactant–polymer formulation to support performance of the entomopathogenic nematode Steinernema carpocapsae for control of diamondback moth larvae (Plutella xylostella). Biocontrol Sci Technol 15:601–613

Article  Google Scholar 

Schroer S, Ehlers RU (2005) Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biol Control 33:81–86

Article  Google Scholar 

Stock SP, Campbell JF, Nadler SA (2001) Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. J Parasitol 87:877–890

Article  CAS  PubMed  Google Scholar 

Shapiro DI, Lewis EE (1999) Comparison of entomopathogenic nematode infectivity from infected hosts versus aqueous suspension. Environ Entomol 28:907–911

Article  Google Scholar 

Simons WR, Poinar GO Jr (1973) The ability of Neoaplectana carpocapsae (Steinernematidae: Nematodea) to survive extended periods of desiccation. J Invertebr Pathol 22:228–230. https://doi.org/10.1016/0022-2011(73)90138-9

Article  Google Scholar 

Tariq AM (2020) Using Rhabditis blumi Sudhaus as biological agents to control the palm borer, Arabian rhinoceros beetle, Oryctes agamemnon arabicus. Iraqi J Agric Sci 51:657–664. https://doi.org/10.36103/ijas.v51i2.993

Article  Google Scholar 

Turki H, Soltani A (2017) Semi-field and field studies on the efficacy of monomolecular surface film (Agnique®) against immature mosquitoes in the malarious areas of Iran. Asian Pac J Trop Dis 7:472–476. https://doi.org/10.12980/apjtd.7.2017D7-69

Article 

留言 (0)

沒有登入
gif