Nucleic acid-based scaffold systems and application in enzyme cascade catalysis

Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, Jaeger L (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5(9):676–682. https://doi.org/10.1038/nnano.2010.160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altinkaynak C, Tavlasoglu S, Ozdemir N, Ocsoy I (2016) A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol 93–94:105–112. https://doi.org/10.1016/j.enzmictec.2016.06.011

Article  CAS  PubMed  Google Scholar 

Andersen ES, Dong M, Nielsen MM, Jahn K, Lind-Thomsen A, Mamdouh W, Gothelf KV, Besenbacher F, Kjems J (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6):1213–1218. https://doi.org/10.1021/nn800215j

Article  CAS  PubMed  Google Scholar 

Berckman EA, Chen W (2019) Exploiting dCas9 fusion proteins for dynamic assembly of synthetic metabolons. Chem Commun 55(57):8219–8222. https://doi.org/10.1039/C9CC04002A

Article  CAS  Google Scholar 

Berckman EA, Chen W (2020) A modular approach for dCas9-mediated enzyme cascading via orthogonal bioconjugation. Chem Commun 56(77):11426–11428. https://doi.org/10.1039/D0CC04196C

Article  CAS  Google Scholar 

Brocken DJW, Tark-Dame M, Dame RT (2018) dCas9: a versatile tool for epigenome editing. Curr Issues Mol Biol 26:15–32. https://doi.org/10.21775/cimb.026.015

Article  PubMed  Google Scholar 

Castro CE, Kilchherr F, Kim D-N, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229. https://doi.org/10.1038/nmeth.1570

Article  CAS  PubMed  Google Scholar 

Chandrasekaran AR (2016) Programmable DNA scaffolds for spatially-ordered protein assembly. Nanoscale 8(8):4436–4446. https://doi.org/10.1039/C5NR08685J

Article  CAS  PubMed  Google Scholar 

Chandrasekaran AR, Pushpanathan M, Halvorsen K (2016) Evolution of DNA origami scaffolds. Mater Lett 170:221–224. https://doi.org/10.1016/j.matlet.2016.01.161

Article  CAS  Google Scholar 

Chi Q, Yang Z, Xu K, Wang C, Liang H (2019) DNA nanostructure as an efficient drug delivery platform for immunotherapy. Front Pharmacol 10:1585. https://doi.org/10.3389/fphar.2019.01585

Article  CAS  PubMed  Google Scholar 

Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY, Lebar T, Turnšek J, Tomšič N, Avbelj M, Gaber R, Koprivnjak T, Mori J, Glavnik V, Vovk I, Benčina M, Hodnik V, Anderluh G, Dueber JE, Jerala R, DeLisa MP (2011) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40(4):1879–1889. https://doi.org/10.1093/nar/gkr888

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correro MR, Moridi N, Schützinger H, Sykora S, Ammann EM, Peters EH, Dudal Y, Corvini PF-X, Shahgaldian P (2016) Enzyme shielding in an enzyme-thin and soft organosilica layer. Angew 55(21):6285–6289. https://doi.org/10.1002/anie.201600590

Article  CAS  Google Scholar 

Del Grosso E, Dallaire AM, Vallée-Bélisle A, Ricci F (2015) Enzyme-operated DNA-based nanodevices. Nano Lett 15(12):8407–8411. https://doi.org/10.1021/acs.nanolett.5b04566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Sci 333(6041):470–474. https://doi.org/10.1126/science.1206938

Article  CAS  Google Scholar 

Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Sci 335(6069):720–723. https://doi.org/10.1126/science.1215670

Article  CAS  Google Scholar 

Denny SK, Bisaria N, Yesselman JD, Das R, Herschlag D, Greenleaf WJ (2018) High-throughput investigation of diverse junction elements in RNA tertiary folding. Cell 174(2):377. https://doi.org/10.1016/j.cell.2018.05.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42(15):6437–6474. https://doi.org/10.1039/C3CS35506C

Article  CAS  PubMed  Google Scholar 

Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Sci 325(5941):725–730. https://doi.org/10.1126/science.1174251

Article  CAS  Google Scholar 

Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nat 459(7245):414–418. https://doi.org/10.1038/nature08016

Article  CAS  Google Scholar 

Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759. https://doi.org/10.1038/nbt.1557

Article  CAS  PubMed  Google Scholar 

Fang J, Yuan C, Li J, Li J, Yang T, Guo Y, Wang D, Xue J, Fu W, Xie G (2021) An enzyme-powered, three-dimensional lame DNA walker. Biosens Bioelectron 177:112981. https://doi.org/10.1016/j.bios.2021.112981

Article  CAS  PubMed  Google Scholar 

Farag N, Mattossovich R, Merlo R, Nierzwicki Ł, Palermo G, Porchetta A, Perugino G, Ricci F (2021) Folding-upon-repair DNA nanoswitches for monitoring the activity of DNA repair enzymes. Angew Chem Int Ed Engl 60(13):7283–7289. https://doi.org/10.1002/anie.202016223

Article  CAS  PubMed  PubMed Central  Google Scholar 

France SP, Hepworth LJ, Turner NJ, Flitsch SL (2017) Constructing biocatalytic cascades: In vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal 7(1):710–724. https://doi.org/10.1021/acscatal.6b02979

Article  CAS  Google Scholar 

Fruk L, Kuhlmann J, Niemeyer CM (2009) Analysis of heme-reconstitution of apoenzymes by means of surface plasmon resonance. Chem Commun 2:230–232. https://doi.org/10.1039/b817206d

Article  CAS  Google Scholar 

Fu J, Liu M, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134(12):5516–5519. https://doi.org/10.1021/ja300897h

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu J, Yang YR, Johnson-Buck A, Liu M, Liu Y, Walter NG, Woodbury NW, Yan H (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat Nanotechnol 9(7):531–536. https://doi.org/10.1038/nnano.2014.100

Article  CAS  PubMed  Google Scholar 

Fu J, Yang YR, Dhakal S, Zhao Z, Liu M, Zhang T, Walter NG, Yan H (2016) Assembly of multienzyme complexes on DNA nanostructures. Nat Protoc 11(11):2243–2273. https://doi.org/10.1038/nprot.2016.139

Article  CAS  PubMed  Google Scholar 

Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge Z, Fu J, Liu M, Jiang S, Andreoni A, Zuo X, Liu Y, Yan H, Fan C (2019) Constructing submonolayer DNA origami scaffold on gold electrode for wiring of redox enzymatic cascade pathways. ACS Appl Mater Interfaces 11(15):13881–13887. https://doi.org/10.1021/acsami.8b12374

Article  CAS  PubMed  Google Scholar 

Geary C, Grossi G, McRae EKS, Rothemund PWK, Andersen ES (2021) RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem 13(6):549–558. https://doi.org/10.1038/s41557-021-00679-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giessen TW, Silver PA (2016) Encapsulation as a strategy for the design of biological compartmentalization. J Mol Biol 428(5 Pt B):916–27. https://doi.org/10.1016/j.jmb.2015.09.009

Article  CAS  PubMed  Google Scholar 

Grossi G, Dalgaard Ebbesen Jepsen M, Kjems J, Andersen ES (2017) Control of enzyme reactions by a reconfigurable DNA nanovault. Nat Commun 8(1):992. https://doi.org/10.1038/s41467-017-01072-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guisan JM, López-Gallego F, Bolivar JM, Rocha-Martín J, Fernandez-Lorente G (2020) The science of enzyme immobilization. Methods Mol Biol 2100:1–26. https://doi.org/10.1007/978-1-0716-0215-7_1

Article  CAS  PubMed  Google Scholar 

Högberg B, Liedl T, Shih WM (2009) Folding DNA origami from a double-stranded source of scaffold. J Am Chem Soc 131(26):9154–9155. https://doi.org/10.1021/ja902569x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Idan O, Hess H (2013) Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano 7(10):8658–8665. https://doi.org/10.1021/nn402823k

Article  CAS  PubMed  Google Scholar 

Ijäs H, Hakaste I, Shen B, Kostiainen MA, Linko V (2019) Reconfigurable DNA origami nanocapsule for pH-controlled encapsulation and display of cargo. ACS Nano 13(5):5959–5967. https://doi.org/10.1021/acsnano.9b01857

留言 (0)

沒有登入
gif