Cell type-specific changes identified by single-cell transcriptomics in Alzheimer’s disease

Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron. 1991;6(4):487–98.

Article  CAS  PubMed  Google Scholar 

Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):32–42.

Article  PubMed  PubMed Central  Google Scholar 

Braak H, et al. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404.

Article  PubMed  PubMed Central  Google Scholar 

Kantarci K. 2021 marks a new era for Alzheimer’s therapeutics. Lancet Neurol. 2022;21(1):3–4.

Article  PubMed  Google Scholar 

Mostafavi S, et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat Neurosci. 2018;21(6):811–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tasaki S, et al. Multi-omic directed networks describe features of gene regulation in aged brains and expand the set of genes driving cognitive decline. Front Genet. 2018;9:294.

Article  PubMed  PubMed Central  Google Scholar 

Yu L, et al. Targeted brain proteomics uncover multiple pathways to Alzheimer’s dementia. Ann Neurol. 2018;84(1):78–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beckmann ND, et al. Multiscale causal networks identify VGF as a key regulator of Alzheimer’s disease. Nat Commun. 2020;11(1):3942.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson ECB, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26(5):769–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease. Sci Data. 2018;5:180185.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKhann GM, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.

Article  PubMed  PubMed Central  Google Scholar 

Jack CR Jr, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):257–62.

Article  PubMed  PubMed Central  Google Scholar 

Albert MS, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–9.

Article  PubMed  PubMed Central  Google Scholar 

Jack CR Jr, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62.

Article  PubMed  PubMed Central  Google Scholar 

Sperling RA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92.

Article  PubMed  PubMed Central  Google Scholar 

Kunkle BW, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett DA, et al. Religious orders study and rush memory and aging project. J Alzheimers Dis. 2018;64(s1):S161–s189.

Article  PubMed  PubMed Central  Google Scholar 

Fillenbaum GG, et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimers Dement. 2008;4(2):96–109.

Article  PubMed  PubMed Central  Google Scholar 

Thal DR, et al. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58(12):1791–800.

Article  PubMed  Google Scholar 

Montine TJ, et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 2012;123(1):1–11.

Article  CAS  PubMed  Google Scholar 

Wang X, et al. Deciphering cellular transcriptional alterations in Alzheimer’s disease brains. Mol Neurodegener. 2020;15(1):38.

Article  PubMed  PubMed Central  Google Scholar 

Horgusluoglu E, et al. Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer’s disease. Alzheimers Dement. 2021;18(6):1260–78.

Article  PubMed  PubMed Central  Google Scholar 

Neff RA, et al. Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci Adv. 2021;7(2):eabb5398.

Sims R, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49(9):1373–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thrupp N, et al. Single-nucleus RNA-seq is not suitable for detection of microglial activation genes in humans. Cell Rep. 2020;32(13):108189.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakken TE, et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One. 2018;13(12):e0209648.

Article  PubMed  PubMed Central  Google Scholar 

Lake BB, et al. A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Sci Rep. 2017;7(1):6031.

Article  PubMed  PubMed Central  Google Scholar 

Cain A, et al. Multi-cellular communities are perturbed in the aging human brain and with Alzheimer’s disease. bioRxiv. 2020;2020.12.22.424084.

Olah M, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat Commun. 2020;11(1):6129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang AC, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022;603(7903):885–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marsh SE, et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain. Nat Neurosci. 2022;25(3):306–16.

Article  CAS  PubMed  Google Scholar 

Mattei D, et al. Enzymatic dissociation induces transcriptional and proteotype bias in brain cell populations. Int J Mol Sci. 2020;21(21):7944.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ocanas SR, et al. Minimizing the ex vivo confounds of cell-isolation techniques on transcriptomic and translatomic profiles of purified microglia. eNeuro. 2022;9(2):ENEURO.0348-21.2022.

Hodge RD, et al. Conserved cell types with divergent features in human versus mouse cortex. Nature. 2019;573(7772):61–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brain Initiative Cell Census Network. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature. 2021;598(7879):86–102.

Article  Google Scholar 

Tasic B, et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci. 2016;19(2):335–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeisel A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138–42.

Article  CAS  PubMed  Google Scholar 

Wang X, et al. Direct comparative analyses of 10X Genomics Chromium and Smart-seq2. Genomics Proteomics Bioinformatics. 2021;19(2):253–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibson G. Perspectives on rigor and reproducibility in single cell genomics. PLoS Genet. 2022;18(5):e1010210.

Article  CAS 

留言 (0)

沒有登入
gif