Comparative Studies of Karyotypes in the Cervidae Family

Cytogenetic and Genome Research

Proskuryakova A.A.a· Ivanova E.S.a· Perelman P.L.a· Ferguson-Smith M.A.b· Yang F.c· Okhlopkov I.M.d· Graphodatsky A.S.a

Author affiliations

aInstitute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
bCambridge Resource Center for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
cShandong University of Technology, School of Life Sciences and Medicine, Zibo, China
dInstitute for Biological Problems of Cryolithozone Siberian Branch of RAS, Yakutsk, Russian Federation

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Access via DeepDyve Unlimited fulltext viewing Of this article Organize, annotate And mark up articles Printing And downloading restrictions apply

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview

Abstract of Original Article

Received: August 02, 2022
Accepted: October 02, 2022
Published online: December 02, 2022

Number of Print Pages: 11
Number of Figures: 2
Number of Tables: 2

ISSN: 1424-8581 (Print)
eISSN: 1424-859X (Online)

For additional information: https://www.karger.com/CGR

Abstract

The family Cervidae is the second most diverse family in the infraorder Pecora and is characterized by a striking variability in the diploid chromosome numbers among species, ranging from 6 to 70. Chromosomal rearrangements in Cervidae have been studied in detail by chromosome painting. There are many comparative cytogenetic data for both subfamilies (Cervinae and Capreolinae) based on homologies with chromosomes of cattle and Chinese muntjac. Previously it was found that interchromosomal rearrangements are the major type of rearrangements occurring in the Cervidae family. Here, we build a detailed chromosome map of a female reindeer (Rangifer tarandus, 2n = 70, Capreolinae) and a female black muntjac (Muntiacus crinifrons, 2n = 8, Cervinae) with dromedary homologies to find out what other types of rearrangements may have underlined the variability of Cervidae karyotypes. To track chromosomal rearrangements and the distribution of nucleolus organizer regions not only during Cervidae but also Pecora evolution, we summarized new data and compared them with chromosomal maps of other already studied species. We discuss changes in the pecoran ancestral karyotype in the light of new painting data. We show that intrachromosomal rearrangements in autosomes of Cervidae are more frequent than previously thought: at least 13 inversions in evolutionary breakpoint regions were detected.

© 2022 S. Karger AG, Basel

References Balmus G, Trifonov VA, Biltueva LS, O’Brien PC, Alkalaeva ES, Fu B. Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res. 2007;15(4):499–514. Bana NÁ, Nyiri A, Nagy J, Frank K, Nagy T, Steger V. The red deer Cervus elaphus genome CerEla1. 0: sequencing, annotating, genes, and chromosomes. Mol Genet Genomics. 2018;293(3):665–84. Biltueva LS, Perelman PL, Proskuryakova AA, Lemskaya NA, Serdyukova NA, Grafodatsky AS. Chromosomes of the Indian muntjac (Muntiacus muntjak): comeback. Cell Tissue Biol. 2020;14(6):407–12. Bonnet-Garnier A, Claro F, Thevenon S, Gautier M, Hayes H. Identification by R-banding and FISH of chromosome arms involved in Robertsonian translocations in several deer species. Chromosome Res. 2003;11(7):649–63. Cernohorska H, Kubickova S, Vahala J, Robinson TJ, Rubes J. Cytotypes of Kirk’s dik-dik (Madoqua kirkii, Bovidae) show multiple tandem fusions. Cytogenet Genome Res. 2011;132(4):255–63. Cernohorska H, Kubickova S, Kopecna O, Kulemzina AI, Perelman PL, Elder FFB, et al. Molecular cytogenetic insights to the phylogenetic affinities of the giraffe (Giraffa camelopardalis) and pronghorn (Antilocapra americana). Chromosome Res. 2013;21(5):447–60. Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science. 2019;364(6446):eaav6202. Dementyeva PV, Trifonov VA, Kulemzina AI, Graphodatsky AS. Reconstruction of the putative Cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes. Cytogenet Genome Res. 2010;128(4):228–35. Di Meo GP, Iannuzzi L, Perucatti A, Ferrara L. Identification of nucleolus organizer chromosomes in sheep (Ovis aries L.) by sequential GBG/Ag-NOR and RBG/Ag-NOR techniques. Cytobios. 1993;75(302-303):183–90. Duarte JMB, Jorge W. Morphologic and cytogenetic description of the small red brocket (Mazama bororo Duarte, 1996) in Brazil. Mammalia. 2003;67(3):403–10. Farré M, Kim J, Proskuryakova AA, Zhang Y, Kulemzina AI, Li Q. Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Res. 2019;29(4):576–89. Fontana F, Rubini M. Chromosomal evolution in Cervidae. Biosystems. 1990;24(2):157–74. Frohlich J, Kubickova S, Musilova P, Cernohorska H, Muskova H, Vodicka R, et al. : Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. PLoS One. 2017;12(11):e0187559. Gallagher DS, Davis SK, De Donato M, Burzlaff JD, Womack JE, Taylor JF. A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae). Chromosome Res. 1998;6(7):505–13. Gallagher DS Jr, Davis SK, De Donato M, Burzlaff JD, Womack JE, Taylor JF. A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Chromosome Res. 1999;7(6):481–92. Gentry AW, Rössner GE, Heizmann EPJ. Suborder Ruminantia. In: Rösner GE, Heissig K, editors. The Miocene land mammals of Europe. München: Pfeil Verlag; 1999. p. 225–258. Gerbault-Seureau M, Cacheux L, Dutrillaux B. The relationship between the (in-) stability of NORs and their chromosomal location: the example of Cercopithecidae and a short review of other primates. Cytogenet Genome Res. 2017;153(3):138–46. Graphodatsky AS, Perelman PL, O’Brien SJ. Atlas of mammalian chromosomes. 2nd ed. Wiley-Blackwell; 2020. Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol. 2012;335(1):32–50. Heckeberg NS. The systematics of the Cervidae: a total evidence approach. PeerJ. 2020;8:e8114. Hsu TC, Benirschke K. An atlas of mammalian chromosomes, 10. Springer; 1977. Huang L, Chi J, Nie W, Wang J, Yang F. Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica. 2006a;127(1-3):25–33. Huang L, Chi J, Wang J, Nie W, Su W, Yang F. High-density comparative BAC mapping in the black muntjac (Muntiacus crinifrons): molecular cytogenetic dissection of the origin of MCR 1p+ 4 in the X1X2Y1Y2Y3 sex chromosome system. Genomics. 2006b;87(5):608–15. Iannuzzi L, Di Meo GP, Perucatti A, Schibler L, Incarnato D, Cribiu EP. Comparative FISH mapping in river buffalo and sheep chromosomes: assignment of forty autosomal type I loci from sixteen human chromosomes. Cytogenet Genome Res. 2001;94(1-2):43–8. Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19(17):4780. Kulemzina AI, Trifonov VA, Perelman PL, Rubtsova NV, Volobuev V, Ferguson-Smith MA, et al. Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Res. 2009;17(3):419–36. Kulemzina AI, Yang F, Trifonov VA, Ryder OA, Ferguson-Smith MA, Graphodatsky AS. Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype. Chromosome Res. 2011;19(4):531–9. Kulemzina AI, Perelman PL, Grafodatskaya DA, Nguyen TT, Thompson M, Roelke-Parker ME. Comparative chromosome painting of pronghorn (Antilocapra americana) and saola (Pseudoryx nghetinhensis) karyotypes with human and dromedary camel probes. BMC Genet. 2014;15(1):68. Kulemzina AI, Proskuryakova AA, Beklemisheva VR, Lemskaya NA, Perelman PL, Graphodatsky AS. Comparative chromosome map and heterochromatin features of the gray whale karyotype (Cetacea). Cytogenet Genome Res. 2016;148(1):25–34. Larkin DM, Pape G, Donthu R, Auvil L, Welge M, Lewin HA. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res. 2009;19(5):770–7. Lee C, Griffin DK, O’Brien PCM, Yang F, Lin CC, Ferguson-Smith MA. Defining the anatomy of the Rangifer tarandus sex chromosomes. Chromosoma. 1998;107(1):61–9. Lemskaya NA, Kulemzina AI, Beklemisheva VR, Biltueva LS, Proskuryakova AA, Hallenbeck JM, et al. A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT-and GC-rich heterochromatin. Chromosome Res. 2018;26(4):307–15. Maden BEH, Dent CL, Farrell TE, Garde J, McCallum FS, Wakeman JA. Clones of human ribosomal DNA containing the complete 18 S-rRNA and 28 S-rRNA genes. Characterization, a detailed map of the human ribosomal transcription unit and diversity among clones. Biochem J. 1987;246(2):519–27. Montgelard C, Catzeflis FM, Douzery E. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol Biol Evol. 1997;14(5):550–9. Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun Biol. 2020;3:480. Murmann AE, Mincheva A, Scheuermann MO, Gautier M, Yang F, Buitkamp J. Comparative gene mapping in cattle, Indian muntjac, and Chinese muntjac by fluorescence in situ hybridization. Genetica. 2008;134(3):345–51. Nguyen TT, Aniskin VM, Gerbault-Seureau M, Planton H, Renard JP, Nguyen B, et al. Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet Genome Res. 2008;122(1):41–54. O’Brien SJ, Menninger JC, Nash WG. Atlas of mammalian chromosomes. John Wiley & Sons; 2006. Proskuryakova AA, Kulemzina AI, Perelman PL, Makunin AI, Larkin DM, Farre M. X chromosome evolution in Cetartiodactyla. Genes. 2017;8(9):216. Proskuryakova A, Kulemzina A, Perelman P, Serdukova N, Ryder O, Graphodatsky A. The case of X and Y localization of nucleolus organizer regions (NORs) in Tragulus javanicus (Cetartiodactyla, Mammalia). Genes. 2018;9(6):312. Proskuryakova AA, Kulemzina AI, Perelman PL, Yudkin DV, Lemskaya NA, Okhlopkov IM. Comparative chromosome mapping of musk ox and the X chromosome among some Bovidae species. Genes. 2019;10(11):857. Prothero DR, Domning D, Fordyce RE, Foss S, Janis C, Lucas S. On the unnecessary and misleading taxon “Cetartiodactyla”. J Mamm Evol. 2022;29(1):93–7. Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res. 2008;120(3-4):351–7. Rubes J, Musilova P, Kopecna O, Kubickova S, Cernohorska H, Kulemsina AI. Comparative molecular cytogenetics in Cetartiodactyla. Cytogenet Genome Res. 2012;137(2-4):194–207. Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971;298(7731):971–2. Slate J, Van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ, Mathias HC. A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics. 2002;160(4):1587–97. Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Martínková N, Rubes J. Sequence analysis and FISH mapping of four satellite DNA families among Cervidae. Genes. 2020;11(5):584. Vozdova M, Kubickova S, Martínková N, Galindo DJ, Bernegossi AM, Cernohorska H. Satellite DNA in neotropical deer species. Genes. 2021;12(1):123. Webb SD. Evolutionary history of new world Cervidae. In: Antelopes, deer, and relatives: Fossil record. behavioral ecology, systematics, and conservation. New Haven: Yale University Press; 2000. p. 38–64. Yang F, Graphodatsky AS. Animal probes and ZOO-FISH. In: Liehr T, editor. Fluorescence in situ hybridization (FISH). Springer Protocols Handbooks. Berlin, Heidelberg: Springer; 2017. p. 323–46. Yang F, Carter NP, Shi L, Ferguson-Smith MA. A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma. 1995;103(9):642–52. Yang F, O’Brien PCM, Wienberg J, Ferguson-Smith MA. Evolution of the black muntjac (Muntiacus crinifrons) karyotype revealed by comparative chromosome painting. Cytogenet Genome Res. 1997a;76(3-4):159–63. Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J. Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics. 1997b;39(3):396–401. Yang F, O’Brien PCM, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA. Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma. 1997c;106(1):37–43. Yang F, O’Brien PCM, Milne BS, Graphodatsky AS, Solanky N, Trifonov V, et al. A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics. 1999;62(2):189–202. Zurano JP, Magalhães FM, Asato AE, Silva G, Bidau CJ, Mesquita DO. Cetartiodactyla: updating a time-calibrated molecular phylogeny. Mol Phylogenet Evol. 2019;133:256–62. Article / Publication Details

First-Page Preview

Abstract of Original Article

Received: August 02, 2022
Accepted: October 02, 2022
Published online: December 02, 2022

Number of Print Pages: 11
Number of Figures: 2
Number of Tables: 2

ISSN: 1424-8581 (Print)
eISSN: 1424-859X (Online)

For additional information: https://www.karger.com/CGR

Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif