Semitransparent organic photovoltaics for building-integrated photovoltaic applications

Forrest, S. R. Organic Electronics: Foundations to Applications (Oxford Univ. Press, 2020).

Lee, K. et al. The development of transparent photovoltaics. Cell Rep. Phys. Sci. 1, 100143 (2020).

Article  CAS  Google Scholar 

Traverse, C. J., Pandey, R., Barr, M. C. & Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2, 849–860 (2017).

Article  Google Scholar 

Gasparini, N., Salleo, A., McCulloch, I. & Baran, D. The role of the third component in ternary organic solar cells. Nat. Rev. Mater. 4, 229–242 (2019).

Article  Google Scholar 

Hou, J., Inganäs, O., Friend, R. H. & Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018).

Article  CAS  Google Scholar 

Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

Article  CAS  Google Scholar 

Meng, D. et al. Near-infrared materials: the turning point of organic photovoltaics. Adv. Mater. 34, e2107330 (2022).

Article  Google Scholar 

Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153–161 (2012).

Article  CAS  Google Scholar 

Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 30, 1800388 (2018).

Article  Google Scholar 

Zheng, Z. et al. Tandem organic solar cell with 20.2% efficiency. Joule 6, 171–184 (2022).

Article  CAS  Google Scholar 

Burgués-Ceballos, I. et al. Transparent organic photovoltaics: a strategic niche to advance commercialization. Joule 5, 2261–2272 (2021).

Article  Google Scholar 

Riede, M., Spoltore, D. & Leo, K. Organic solar cells — the path to commercial success. Adv. Energy Mater. 11, 2002653 (2021).

Article  CAS  Google Scholar 

Silinsh, E. A. Organic Molecular Crystals (Springer, 1980).

Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

Article  CAS  Google Scholar 

Tai, Q. & Yan, F. Emerging semitransparent solar cells: materials and device design. Adv. Mater. 29, 1700192 (2017).

Article  Google Scholar 

Duan, L., Hoex, B. & Uddin, A. Progress in semitransparent organic solar cells. Sol. RRL 5, 2100041 (2021).

Article  CAS  Google Scholar 

Li, Y. et al. Enhanced light utilization in semitransparent organic photovoltaics using an optical outcoupling architecture. Adv. Mater. 31, 1903173 (2019).

Article  CAS  Google Scholar 

Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R. & Forrest, S. R. Ideal diode equation for organic heterojunctions. I. Derivation and application. Phys. Rev. B 82, 1–12 (2010).

Google Scholar 

Li, Y. et al. Color-neutral, semitransparent organic photovoltaics for power window applications. Proc. Natl Acad. Sci. USA 117, 21147–21154 (2020).

Article  CAS  Google Scholar 

Grancini, G. et al. Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29–33 (2013).

Article  CAS  Google Scholar 

Vandewal, K. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63–68 (2014).

Article  CAS  Google Scholar 

Lin, Y. L., Fusella, M. A. & Rand, B. P. The impact of local morphology on organic donor/acceptor charge transfer states. Adv. Energy Mater. 8, 1702816 (2018).

Article  Google Scholar 

Vandewal, K. et al. The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 18, 2064–2070 (2008).

Article  CAS  Google Scholar 

Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nat. Mater. 8, 904–909 (2009).

Article  CAS  Google Scholar 

Liu, X., Li, Y., Ding, K. & Forrest, S. Energy loss in organic photovoltaics: nonfullerene versus fullerene acceptors. Phys. Rev. Appl. 11, 24060 (2019).

Article  CAS  Google Scholar 

Janssen, R. A. J. & Nelson, J. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013).

Article  CAS  Google Scholar 

Azzouzi, M., Kirchartz, T. & Nelson, J. Factors controlling open-circuit voltage losses in organic solar cells. Trends Chem. 1, 49–62 (2019).

Article  CAS  Google Scholar 

Li, W., Hendriks, K. H., Furlan, A., Wienk, M. M. & Janssen, R. A. J. High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015).

Article  CAS  Google Scholar 

Wang, M. et al. High open circuit voltage in regioregular narrow band gap polymer solar cells. J. Am. Chem. Soc. 136, 12576–12579 (2014).

Article  CAS  Google Scholar 

Menke, S. M., Ran, N. A., Bazan, G. C. & Friend, R. H. Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule 2, 25–35 (2018).

Article  CAS  Google Scholar 

Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

Article  CAS  Google Scholar 

Zhang, J., Shuan Tan, H., Guo, X., Facchetti, A. & Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018).

Article  CAS  Google Scholar 

Liu, X., Rand, B. P. & Forrest, S. R. Engineering charge-transfer states for efficient, low-energy-loss organic photovoltaics. Trends Chem. 1, 815–829 (2019).

Article  CAS  Google Scholar 

Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

Article  CAS  Google Scholar 

Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

Article  CAS  Google Scholar 

Li, Y. et al. Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. J. Mater. Chem. A 4, 5890–5897 (2016).

Article  CAS  Google Scholar 

Li, Y. et al. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci. 10, 1610–1620 (2017).

Article  CAS  Google Scholar 

Li, Y. et al. High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J. Am. Chem. Soc. 139, 17114–17119 (2017).

Article  CAS  Google Scholar 

Tu, Z., Han, G. & Yi, Y. Barrier-free charge separation enabled by electronic polarization in high-efficiency non-fullerene organic solar cells. J. Phys. Chem. Lett. 11, 2585–2591 (2020).

Article  CAS  Google Scholar 

Chen, X.-K., Coropceanu, V. & Brédas, J.-L. Assessing the nature of the charge-transfer electronic states in organic solar cells. Nat. Commun. 9, 5295 (2018).

Article  CAS  Google Scholar 

Eisner, F. D. et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J. Am. Chem. Soc. 141, 6362–6374 (2019).

Article  CAS  Google Scholar 

Panhans, M. et al. Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells. Nat. Commun. 11, 1488 (2020).

Article  CAS  Google Scholar 

Yao, H. et al. 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc. 141, 7743–7750 (2019).

Article  CAS  Google Scholar 

Markina, A. et al. Chemical design rules for non-fullerene acceptors in organic solar cells. Adv. Energy Mater. 11, 2102363 (2021).

Article  CAS  Google Scholar 

Li, Y. et al. Vacuum-deposited biternary organic photovoltaics. J. Am. Chem. Soc. 141, 18204–18210 (2019).

Article  CAS  Google Scholar 

Zhang, G. et al. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun. 11, 3943 (2020).

Article  CAS  Google Scholar 

Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

Article  CAS  Google Scholar 

Li, G. et al. Systematic merging of nonfullerene acceptor π-extension and tetrafluorination strategies affords polymer solar cells with >16% efficiency. J. Am. Chem. Soc. 143, 6123–6139 (2021).

Article  CAS  Google Scholar 

Zhu, L. et al. Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells. Angew. Chem. Int. Ed. 60, 15348–15353 (2021).

Article  CAS 

留言 (0)

沒有登入
gif