Reactions in single-molecule junctions

Chen, P. et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010).

Article  CAS  Google Scholar 

Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

Article  CAS  Google Scholar 

Wang, B. et al. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy. Chem. Commun. 53, 328–331 (2017).

Article  CAS  Google Scholar 

Chen, T. et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 117, 7510–7537 (2017).

Article  CAS  Google Scholar 

Wang, W. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem. Soc. Rev. 47, 2485–2508 (2018).

Article  CAS  Google Scholar 

Dong, B., Mansour, N., Huang, T.-X., Huang, W. & Fang, N. Single molecule fluorescence imaging of nanoconfinement in porous materials. Chem. Soc. Rev. 50, 6483–6506 (2021).

Article  CAS  Google Scholar 

Eivgi, O. & Blum, S. A. Exploring chemistry with single-molecule and -particle fluorescence microscopy. Trends Chem. 4, 5–14 (2022).

Article  CAS  Google Scholar 

Cordes, T. & Blum, S. A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem. 5, 993–999 (2013).

Article  CAS  Google Scholar 

Scaiano, J. C. & Lanterna, A. E. Is single-molecule fluorescence spectroscopy ready to join the organic chemistry toolkit? A test case involving click chemistry. J. Org. Chem. 82, 5011–5019 (2017).

Article  CAS  Google Scholar 

Shaik, S., Mandal, D. & Ramanan, R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016).

Article  CAS  Google Scholar 

Shaik, S., Danovich, D., Joy, J., Wang, Z. & Stuyver, T. Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 142, 12551–12562 (2020).

Article  CAS  Google Scholar 

Huang, X. & Li, T. Recent progress in the development of molecular-scale electronics based on photoswitchable molecules. J. Mater. Chem. C 8, 821–848 (2020).

Article  CAS  Google Scholar 

Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

Article  CAS  Google Scholar 

Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

Article  CAS  Google Scholar 

Rutledge, H. L. & Tezcan, F. A. Electron transfer in nitrogenase. Chem. Rev. 120, 5158–5193 (2020).

Article  CAS  Google Scholar 

Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

Article  CAS  Google Scholar 

Flood, A. H., Stoddart, J. F., Steuerman, D. W. & Heath, J. R. Whence molecular electronics? Science 306, 2055–2056 (2004).

Article  CAS  Google Scholar 

Joachim, C. & Ratner, M. A. Molecular electronics: some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

Article  CAS  Google Scholar 

Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

Article  CAS  Google Scholar 

Aragonès, A. C. et al. Electrostatic catalysis of a Diels–Alder reaction. Nature 531, 88–91 (2016).

Article  Google Scholar 

Meng, L. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 10, 1450 (2019).

Article  Google Scholar 

Gehring, P., Thijssen, J. M. & van der Zant, H. S. J. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys. 1, 381–396 (2019).

Article  Google Scholar 

Chen, H. et al. Single-molecule charge transport through positively charged electrostatic anchors. J. Am. Chem. Soc. 143, 2886–2895 (2021).

Article  CAS  Google Scholar 

Li, X. et al. Supramolecular systems and chemical reactions in single-molecule break junctions. Top. Curr. Chem. 375, 42 (2017).

Article  Google Scholar 

Stone, I. et al. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 5, 695–710 (2021).

Article  Google Scholar 

Xie, X. et al. Single-molecule junction: a reliable platform for monitoring molecular physical and chemical processes. ACS Nano 16, 3476–3505 (2022).

Article  CAS  Google Scholar 

Li, Y., Yang, C. & Guo, X. Single-molecule electrical detection: a promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 53, 159–169 (2020).

Article  CAS  Google Scholar 

Cheng, Z. L. et al. In situ formation of highly conducting covalent Au–C contacts for single-molecule junctions. Nat. Nanotechnol. 6, 353–357 (2011).

Article  CAS  Google Scholar 

Chen, W. et al. Highly conducting π-conjugated molecular junctions covalently bonded to gold electrodes. J. Am. Chem. Soc. 133, 17160–17163 (2011).

Article  CAS  Google Scholar 

Hines, T. et al. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups. J. Am. Chem. Soc. 135, 3319–3322 (2013).

Article  CAS  Google Scholar 

Starr, R. L. et al. Gold–carbon contacts from oxidative addition of aryl iodides. J. Am. Chem. Soc. 142, 7128–7133 (2020).

Article  CAS  Google Scholar 

Doud, E. A. et al. In situ formation of N-heterocyclic carbene-bound single-molecule junctions. J. Am. Chem. Soc. 140, 8944–8949 (2018).

Article  CAS  Google Scholar 

Zang, Y. et al. Electronically transparent Au–N bonds for molecular junctions. J. Am. Chem. Soc. 139, 14845–14848 (2017).

Article  CAS  Google Scholar 

Lamberti, C., Zecchina, A., Groppo, E. & Bordiga, S. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951–5001 (2010).

Article  CAS  Google Scholar 

Blasco, T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chem. Soc. Rev. 39, 4685–4702 (2010).

Article  CAS  Google Scholar 

Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992).

Article  CAS  Google Scholar 

Xu, W., Kong, J. S., Yeh, Y.-T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008).

Article  CAS  Google Scholar 

Xiao, Y. et al. Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level. J. Am. Chem. Soc. 142, 13201–13209 (2020).

Article  CAS  Google Scholar 

Zhou, X., Xu, W., Liu, G., Panda, D. & Chen, P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule Level. J. Am. Chem. Soc. 132, 138–146 (2010).

Article  CAS  Google Scholar 

Liu, X. et al. Revealing the catalytic kinetics and dynamics of individual Pt atoms at the single-molecule level. Proc. Natl Acad. Sci. USA 119, e2114639119 (2022).

Article  CAS  Google Scholar 

Rybina, A. et al. Distinguishing alternative reaction pathways by single-molecule fluorescence spectroscopy. Angew. Chem. Int. Ed. 52, 6322–6325 (2013).

Article  CAS  Google Scholar 

Kim, D., Zhang, Z. & Xu, K. Spectrally resolved super-resolution microscopy unveils multipath reaction pathways of single spiropyran molecules. J. Am. Chem. Soc. 139, 9447–9450 (2017).

Article  CAS  Google Scholar 

Ramsay, W. J., Bell, N. A. W., Qing, Y. & Bayley, H. Single-molecule observation of the intermediates in a catalytic cycle. J. Am. Chem. Soc. 140, 17538–17546 (2018).

Article  CAS  Google Scholar 

Zaera, F. Probing liquid/solid interfaces at the molecular level. Chem. Rev. 112, 2920–2986 (2012).

Article  CAS  Google Scholar 

Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

Article  CAS  Google Scholar 

van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

Article  Google Scholar 

Choi, H.-K. et al. Single-molecule surface-enhanced Raman scattering as a probe of single-molecule surface reactions: promises and current challenges. Acc. Chem. Res. 52, 3008–3017 (2019).

Article 

留言 (0)

沒有登入
gif