The untargeted urine volatilome for biomedical applications: methodology and volatilome database

Djago F, Lange J, Poinot P. Induced volatolomics of pathologies. Nat Rev Chem. 2021;5:183–96. https://doi.org/10.1038/s41570-020-00248-z.

Article  CAS  Google Scholar 

da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. Clin Mass Spectrom. 2020;18:27–37. https://doi.org/10.1016/j.clinms.2020.10.004.

Article  PubMed  PubMed Central  Google Scholar 

Roszkowska A, Miękus N, Bączek T. Application of solid-phase microextraction in current biomedical research. J Sep Sci. 2019;42:285–302. https://doi.org/10.1002/jssc.201800785.

Article  CAS  PubMed  Google Scholar 

Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, et al. A literature survey of all volatiles from healthy human breath and bodily fluids: The human volatilome. J Breath Res 2021;15. https://doi.org/10.1088/1752-7163/abf1d0.

Banday KM, Pasikanti KK, Chan ECY, Singla R, Rao KVS, Chauhan VS, et al. Use of Urine Volatile Organic Compounds To Discriminate Tuberculosis Patients from Healthy Subjects. Anal Chem. 2011;83:5526–34. https://doi.org/10.1021/ac200265g.

Article  CAS  PubMed  Google Scholar 

Porto-Figueira P, Pereira JAM, Câmara JS. Exploring the potential of needle trap microextraction combined with chromatographic and statistical data to discriminate different types of cancer based on urinary volatomic biosignature. Anal Chim Acta. 2018;1023:53–63. https://doi.org/10.1016/j.aca.2018.04.027.

Article  CAS  PubMed  Google Scholar 

Westenbrink E, Arasaradnam RP, O’Connell N, Bailey C, Nwokolo C, Bardhan KD, et al. Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens Bioelectron. 2015;67:733–8. https://doi.org/10.1016/j.bios.2014.10.044.

Article  CAS  PubMed  Google Scholar 

Gao Q, Su X, Annabi MH, Schreiter BR, Prince T, Ackerman A, et al. Application of Urinary Volatile Organic Compounds (VOCs) for the Diagnosis of Prostate Cancer. Clin Genitourin Cancer. 2019;17:183–90. https://doi.org/10.1016/j.clgc.2019.02.003.

Article  PubMed  Google Scholar 

Yu Q, Xu S, Shi W, Tian Y, Wang X. Mass spectrometry coupled with vacuum thermal desorption for enhanced volatile organic sample analysis. Anal Methods. 2020;12:1852–7. https://doi.org/10.1039/d0ay00175a.

Article  CAS  Google Scholar 

Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, Boyacı E, Bojko B, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications TrAC Trends. Anal Chem. 2015;71:249–64. https://doi.org/10.1016/j.trac.2015.04.017.

Article  CAS  Google Scholar 

Pereira J, Silva CL, Perestrelo R, Gonçalves J, Alves V, Câmara JS. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes Innovative approaches, recent applications and future trends Microextraction Techniques. Anal Bioanal Chem. 2014;406:2101–22. https://doi.org/10.1007/s00216-013-7527-4.

Article  CAS  PubMed  Google Scholar 

Górecki T, Yu X, Pawliszyn J. Theory of analyte extraction by selected porous polymer SPME fibres. Analyst. 1999;124:643–9. https://doi.org/10.1039/a808487d.

Article  Google Scholar 

Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, et al. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta. 2019;1077:67–86. https://doi.org/10.1016/j.aca.2019.05.054.

Article  CAS  PubMed  Google Scholar 

Paiva AC, Crucello J, de Aguiar PN, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. TrAC Trends Anal Chem. 2021;139:116252. https://doi.org/10.1016/J.TRAC.2021.116252.

Article  CAS  Google Scholar 

Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Souza Silva EA, et al. Solid-phase microextraction in metabolomics. TrAC Trends Anal Chem. 2014;61:168–80. https://doi.org/10.1016/J.TRAC.2014.07.005.

Article  CAS  Google Scholar 

Laaks J, Jochmann MA, Schmidt TC. Solvent-free microextraction techniques in gas chromatography. Anal Bioanal Chem. 2012;402:565–71. https://doi.org/10.1007/s00216-011-5511-4.

Article  CAS  PubMed  Google Scholar 

Kędziora-Koch K, Wasiak W. Needle-based extraction techniques with protected sorbent as powerful sample preparation tools to gas chromatographic analysis: Trends in application. J Chromatogr A. 2018;1565:1–18. https://doi.org/10.1016/j.chroma.2018.06.046.

Article  CAS  PubMed  Google Scholar 

Grabowska-Polanowska B, Faber J, Skowron M, Miarka P, Pietrzycka A, Śliwka I, et al. Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A. 2013;1301:179–89. https://doi.org/10.1016/j.chroma.2013.05.012.

Article  CAS  PubMed  Google Scholar 

Theodoridis G, Koster EHM, de Jong GJ. Solid-phase microextraction for the analysis of biological samples. J Chromatogr B Biomed Sci Appl. 2000;745:49–82. https://doi.org/10.1016/S0378-4347(00)00203-6.

Article  CAS  PubMed  Google Scholar 

Pragst F. Application of solid-phase microextraction in analytical toxicology. Anal Bioanal Chem. 2007;388:1393–414. https://doi.org/10.1007/s00216-007-1289-9.

Article  CAS  PubMed  Google Scholar 

Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, et al. Review of recent developments in GC–MS approaches to metabolomics-based research. vol. 14Beale, D. Springer US; 2018. https://doi.org/10.1007/s11306-018-1449-2.

Vazquez-Roig P, Pico Y. Gas chromatography and mass spectroscopy techniques for the detection of chemical contaminants and residues in foods. Chem. Contam. Residues Food, Elsevier Inc.; 2012, p. 17–61. https://doi.org/10.1533/9780857095794.1.17.

Misra BB. Advances in high resolution GC-MS technology: A focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. Anal Methods. 2021;13:2265–82. https://doi.org/10.1039/d1ay00173f.

Article  CAS  PubMed  Google Scholar 

Smith L, Villaret-Cazadamont J, Claus SP, Canlet C, Guillou H, Cabaton NJ, et al. Important considerations for sample collection in metabolomics studies with a special focus on applications to liver functions. Metabolites 2020;10. https://doi.org/10.3390/metabo10030104.

González-Domínguez R, González-Domínguez Á, Sayago A, Fernández-Recamales Á. Recommendations and best practices for standardizing the pre-analytical processing of blood and urine samples in metabolomics. Metabolites. 2020;10:1–18. https://doi.org/10.3390/metabo10060229.

Article  CAS  Google Scholar 

Liu X, Yin P, Shao Y, Wang Z, Wang B, Lehmann R, et al. Which is the urine sample material of choice for metabolomics-driven biomarker studies? Anal Chim Acta. 2020;1105:120–7. https://doi.org/10.1016/j.aca.2020.01.028.

Article  CAS  PubMed  Google Scholar 

Živković Semren T, Brčić Karačonji I, Safner T, Brajenović N, Tariba Lovaković B, Pizent A. Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions. Talanta. 2018;176:537–43. https://doi.org/10.1016/j.talanta.2017.08.064.

Article  CAS  PubMed  Google Scholar 

Endo S, Pfennigsdorff A, Goss KU. Salting-out effect in aqueous NaCl solutions: Trends with size and polarity of solute molecules. Environ Sci Technol. 2012;46:1496–503. https://doi.org/10.1021/es203183z.

Article  CAS  PubMed  Google Scholar 

Song H-N, Kim CH, Lee W-Y, Cho S-H. Simultaneous determination of volatile organic compounds with a wide range of polarities in urine by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2017;31:613–22. https://doi.org/10.1002/rcm.7827.

Article  CAS  PubMed  Google Scholar 

Drabińska N, Małgorzata S, Krupa-Kozak U. Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry for the Determination of Volatile Organic Compounds in Urine. J Anal Chem. 2020;75:792–801. https://doi.org/10.1134/S1061934820060088.

Article  Google Scholar 

Silva CL, Perestrelo R, Silva P, Tomás H, Câmara JS. Implementing a central composite design for the optimization of solid phase microextraction to establish the urinary volatomic expression: a first approach for breast cancer. Metabolomics. 2019;15:64. https://doi.org/10.1007/s11306-019-1525-2.

Article  CAS  PubMed  Google Scholar 

Deev V, Solovieva S, Andreev E, Protoshchak V, Karpushchenko E, Sleptsov A, et al. Prostate cancer screening using chemometric processing of GC–MS profiles obtained in the headspace above urine samples. J Chromatogr B Anal Technol Biomed Life Sci. 2020;1155:122298. https://doi.org/10.1016/j.jchromb.2020.122298.

Article  CAS  Google Scholar 

Aggio RBM, Mayor A, Coyle S, Reade S, Khalid T, Ratcliffe NM, et al. Freeze-drying: An alternative method for the analysis of volatile organic compounds in the headspace of urine samples using solid phase micro-extraction coupled to gas chromatography - mass spectrometry. Chem Cent J. 2016;10:1–12. https://doi.org/10.1186/s13065-016-0155-2.

Article  CAS  Google Scholar 

Aggarwal P, Baker J, Boyd MT, Coyle S, Probert C, Chapman EA. Optimisation of urine sample preparation for headspace-solid phase microextraction gas chromatography-mass spectrometry: Altering sample ph, sulphuric acid concentration and phase ratio. Metabolites. 2020;10:1–17. https://doi.org/10.3390/metabo10120482.

Article  CAS  Google Scholar 

Cozzolino R, De Magistris L, Saggese P, Stocchero M, Martignetti A, Di Stasio M, et al. Use of solid-phase microextraction coupled to gas chromatography-mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Anal Bioanal Chem. 2014;406:4649–62. https://doi.org/10.1007/s00216-014-7855-z.

Article  CAS  PubMed  Google Scholar 

Hua Q, Wang L, Liu C, Han L, Zhang Y, Liu H. Volatile metabonomic profiling in urine to detect novel biomarkers for B-cell non-Hodgkin’s lymphoma. Oncol Lett. 2018;15:7806–16. https://doi.org/10.3892/ol.2018.8352.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva CL, Passos M, Câmara JS. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br J Cancer. 2011;105:1894–904. https://doi.org/10.1038/bjc.2011.437.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taunk K, Taware R, More TH, Porto-Figueira P, Pereira JAM, Mohapatra R, et al. A non-invasive approach to explore the discriminatory potential of the urinary volatilome of invasive ductal carcinoma of the breast. RSC Adv. 2018;8:25040–50. https://doi.org/10.1039/c8ra0

留言 (0)

沒有登入
gif