Scorpion venom peptide HsTx2 suppressed PTZ-induced seizures in mice via the circ_0001293/miR-8114/TGF-β2 axis

Milligan TA. Epilepsy: a clinical overview. Am J Med. 2021;134:840–7.

Article  PubMed  Google Scholar 

Xiang L, Ren Y, Cai H, Zhao W, Song Y. MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain Res. 2015;1622:484–95.

Article  CAS  PubMed  Google Scholar 

Pertuiset B, Sichez JP, Arthuis F, Robert G, Nakano H, Van Effenterre R, Fusciardi J, Goutorbe J, Metzger J, Ancri D, et al. Surgical treatment of supra-clinoid saccular arterial aneurysms admitted 3 weeks following rupture. Neurochirurgie. 1987;33(Suppl 1):1–106.

PubMed  Google Scholar 

Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr. 2017;29:1–16.

Article  PubMed  Google Scholar 

Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci. 2015;16:249–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youn Y, Sung IK, Lee IG. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr. 2013;56:271–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bronisz E, Kurkowska-Jastrzębska I. Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. Mediators Inflamm. 2016;2016:7369020.

Article  PubMed  PubMed Central  Google Scholar 

Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia. 2018;66:1235–43.

Article  PubMed  Google Scholar 

Aronica E, Ravizza T, Zurolo E, Vezzani A. Astrocyte immune responses in epilepsy. Glia. 2012;60:1258–68.

Article  PubMed  Google Scholar 

Tapella L, Cerruti M, Biocotino I, Stevano A, Rocchio F, Canonico PL, Grilli M, Genazzani AA, Lim D. TGF-β2 and TGF-β3 from cultured β-amyloid-treated or 3xTg-AD-derived astrocytes may mediate astrocyte-neuron communication. Eur J Neurosci. 2018;47:211–21.

Article  PubMed  Google Scholar 

Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia. 2011;52(Suppl 3):33–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Senatorov VV Jr, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med. 2019;11:eaaw8283.

Article  CAS  PubMed  Google Scholar 

Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol. 2014;75:864–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JE, Park H, Lee JE, Kang TC. CDDO-me inhibits microglial activation and monocyte infiltration by abrogating NFκB- and p38 MAPK-mediated signaling pathways following status epilepticus. Cells. 2020;9:1123.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao J, Yin S, Song Y, Zeng L, Li S, Liu N, Sun H, Fu Z, Wang Y, Li Y, et al. Novel scorpion venom peptide HsTx2 ameliorates cerebral ischemic brain injury in rats via the MAPK signaling pathway. Biochem Biophys Res Commun. 2021;534:442–9.

Article  CAS  PubMed  Google Scholar 

Zhang Y. Why do we study animal toxins? Dongwuxue Yanjiu. 2015;36:183–222.

CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Feng Z, Yang M, Zeng L, Qi B, Yin S, Li B, Li Y, Fu Z, Shu L, et al. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol Res. 2021;163: 105296.

Article  CAS  PubMed  Google Scholar 

Mortari MR, Cunha AO, Ferreira LB, dos Santos WF. Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacol Ther. 2007;114:171–83.

Article  CAS  PubMed  Google Scholar 

Zhao R, Zhang XY, Yang J, Weng CC, Jiang LL, Zhang JW, Shu XQ, Ji YH. Anticonvulsant effect of BmK IT2, a sodium channel-specific neurotoxin, in rat models of epilepsy. Br J Pharmacol. 2008;154:1116–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godoy LD, Liberato JL, Celani MVB, Gobbo-Neto L, Lopes NP, Dos Santos WF. Disease modifying effects of the spider toxin parawixin2 in the experimental epilepsy model. Toxins. 2017;9:262.

Article  PubMed  PubMed Central  Google Scholar 

Liberato JL, Godoy LD, Cunha AOS, Mortari MR, de Oliveira Beleboni R, Fontana ACK, Lopes NP, Dos Santos WF. Parawixin2 protects hippocampal cells in experimental temporal lobe epilepsy. Toxins. 2018;10:468.

Article  Google Scholar 

de Castro ESJ, Lopes do Couto L, de Oliveira Amaral H, Maria Medeiros Gomes F, Avohay Alves Campos G, Paulino Silva L, Renata Mortari M. Neuropolybin: a new antiseizure peptide obtained from wasp venom. Biochem Pharmacol. 2020;181:114119.

Article  Google Scholar 

Brennan GP, Henshall DC. microRNAs in the pathophysiology of epilepsy. Neurosci Lett. 2018;667:47–52.

Article  CAS  PubMed  Google Scholar 

Quinn SR, O’Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol. 2011;23:421–5.

Article  CAS  PubMed  Google Scholar 

Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Hansen TB, Venø MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2018;37:555–65.

Article  CAS  PubMed  Google Scholar 

Czubak K, Sedehizadeh S, Kozlowski P, Wojciechowska M. An overview of circular RNAs and their implications in myotonic dystrophy. Int J Mol Sci. 2019;20:4385.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

Article  CAS  PubMed  Google Scholar 

Lee WJ, Moon J, Jeon D, Kim TJ, Yoo JS, Park DK, Lee ST, Jung KH, Park KI, Jung KY, et al. Possible epigenetic regulatory effect of dysregulated circular RNAs in epilepsy. PLoS ONE. 2018;13: e0209829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Q, Chen J, Zheng X, Zhang Y, Tao X, Ye J. Circular RNA Circ_ANKMY2 regulates temporal lobe epilepsy progression via the miR-106b-5p/FOXP1 Axis. Neurochem Res. 2020;45:3034–44.

Article  CAS  PubMed  Google Scholar 

Zheng D, Li M, Li G, Hu J, Jiang X, Wang Y, Sun Y. Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cell Signal. 2021;80: 109901.

Article  CAS  PubMed  Google Scholar 

Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp. 2018. https://doi.org/10.3791/56573.

Article  PubMed  PubMed Central  Google Scholar 

Racine RJ. Modification of seizure activity by electrical stimulation II motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–94.

Article  CAS  PubMed  Google Scholar 

Zhu Y, Liu M, Qu S, Cao C, Wei C, Meng XE, Lou Q, Qian D, Duan JA, Ding Y, et al. Elaphuri Davidiani Cornu improves depressive-like behavior in mice and increases neurotrophic factor expression in mouse primary astrocytes via cAMP and ERK-dependent pathways. Front Pharmacol. 2020;11: 593993.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

Article  CAS  PubMed  Google Scholar 

Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol. 2020;18:918–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:31–40.

留言 (0)

沒有登入
gif