Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection

Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med. 2009;169(10):938–44.

Article  PubMed  Google Scholar 

Horak FB, Nashner LM, Diener HC. Postural strategies associated with somatosensory and vestibular loss. Exp Brain Res. 1990;82(1):167–77. https://doi.org/10.1007/BF00230848.

Article  CAS  PubMed  Google Scholar 

Ekvall Hansson E, Magnusson M. Vestibular asymmetry predicts falls among elderly patients with multi- sensory dizziness. BMC Geriatr. 2013;13:77.

Article  PubMed  PubMed Central  Google Scholar 

Ganança FF, Gazzola JM, Aratani MC, Perracini MR, Ganança MM. Circumstances and consequences of falls in elderly people with vestibular disorder. Rev Bras Otorrinolaringol. 2006;72:388–93.

Article  Google Scholar 

Agrawal Y, Ward BK, Minor LB. Vestibular dysfunction: prevalence, impact and need for targeted treatment. J Vestib Res. 2013;23(3):113–7.

Article  PubMed  PubMed Central  Google Scholar 

Figtree WVC, Menant JC, Chau AT, Hübner PP, Lord SR, Migliaccio AA. Prevalence of vestibular disorders in independent people over 50 that experience dizziness. Front Neurol. 2021. https://doi.org/10.3389/fneur.2021.658053.

Article  PubMed  PubMed Central  Google Scholar 

Polensek SH, Tusa RJ, Sterk CE. The challenges of managing vestibular disorders: a qualitative study of clinicians’ experiences associated with low referral rates for vestibular rehabilitation. Int J Clin Pract. 2009;63(11):1604–12.

Article  CAS  PubMed  Google Scholar 

Halmagyi GM, Curthoys IS. A clinical sign of canal paresis. Arch Neurol. 1988;45(7):737–9. https://doi.org/10.1001/archneur.1988.00520310043015.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Wang W. Reliability of the fukuda stepping test to determine the side of vestibular dysfunction. J Int Med Res. 2011;39(4):1432–7. https://doi.org/10.1177/147323001103900431.

Article  CAS  PubMed  Google Scholar 

Cohen HS. A review on screening tests for vestibular disorders. J Neurophysiol. 2019;122(1):81–92. https://doi.org/10.1152/jn.00819.2018.

Article  PubMed  PubMed Central  Google Scholar 

Bhattacharyya N, Gubbels SP, Schwartz SR, Edlow JA, El-Kashlan H, Fife T, et al. Clinical practice guideline: benign paroxysmal positional vertigo (Update). Otolaryngol Head Neck Surg. 2017;156(3 suppl):S1–47.

Article  PubMed  Google Scholar 

Wrisley DM, Marchetti GF, Kuharsky DK, Whitney SL. Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys Ther. 2004;84(10):906–18. https://doi.org/10.1093/ptj/84.10.906.

Article  PubMed  Google Scholar 

Wrisley DM, Walker ML, Echternach JL, Strasnick B. Reliability of the dynamic gait index in people with vestibular disorders1. Arch Phys Med Rehabil. 2003;84(10):1528–33.

Article  PubMed  Google Scholar 

Fritz S, Lusardi M. Walking speed: the sixth vital sign. J Geriatr Phys Ther. 2009;32(2):2–5.

Article  Google Scholar 

Kear BM, Guck TP, McGaha AL. Timed up and go (TUG) test. J Prim Care Community Health. 2017;8(1):9–13.

Article  PubMed  Google Scholar 

Borel L, Harlay F, Lopez C, Magnan J, Chays A, Lacour M. Walking performance of vestibular-defective patients before and after unilateral vestibular neurotomy. Behav Brain Res. 2004;150(1):191–200.

Article  PubMed  Google Scholar 

Cohen HS. Vestibular disorders and impaired path integration along a linear trajectory. J Vestib Res. 2000;10(1):7–15.

Article  CAS  PubMed  Google Scholar 

Crane BT, Demer JL. Effects of vestibular and cerebellar deficits on gaze and torso stability during ambulation. Otolaryngol Head Neck Surg. 2000;123(1):22–9.

Article  CAS  PubMed  Google Scholar 

Teufl W, Lorenz M, Miezal M, Taetz B, Fröhlich M, Bleser G. Towards inertial sensor based mobile gait analysis: event-detection and spatio-temporal parameters. Sensors. 2019;19(1):38.

Article  Google Scholar 

Morrow M, Lowndes B, Fortune E, Kaufman K, Hallbeck S. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227–32.

Article  PubMed  PubMed Central  Google Scholar 

Grove CR, Whitney SL, Pyle GM, Heiderscheit BC. Instrumented gait analysis to identify persistent deficits in gait stability in adults with chronic vestibular loss. JAMA Otolaryngol Head Neck Surg. 2021;147(8):729–38. https://doi.org/10.1001/jamaoto.2021.1276.

Article  PubMed  PubMed Central  Google Scholar 

Grove CR, Heiderscheit BC, Pyle GM, Loyd BJ, Whitney SL. The gait disorientation test: a new method for screening adults with dizziness and imbalance. Arch Phys Med Rehabil. 2021;102(4):582–90.

Article  PubMed  Google Scholar 

Kim KJ, Gimmon Y, Millar J, Brewer K, Serrador J, Schubert MC. The instrumented timed “Up & Go” test distinguishes turning characteristics in vestibular hypofunction. Phys Ther. 2021;101(7):pzab103.

Article  PubMed  Google Scholar 

Caramia C, Torricelli D, Schmid M, Muñoz-Gonzalez A, Gonzalez-Vargas J, Grandas F, et al. IMU-based classification of Parkinson’s disease from Gait: a sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Informatics. 2018;22(6):1765–74.

Article  Google Scholar 

Naghavi N, Wade E. Prediction of freezing of Gait in Parkinson’s disease using statistical inference and lower-limb acceleration data. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):947–55.

Article  PubMed  Google Scholar 

Mirelman A, Ben Or Frank M, Melamed M, Granovsky L, Nieuwboer A, Rochester L, et al. Detecting sensitive mobility features for parkinson’s disease stages via machine learning. Mov Disord. 2021;36(9):2144–55.

Article  PubMed  Google Scholar 

Trabassi D, Serrao M, Varrecchia T, Ranavolo A, Coppola G, De Icco R, et al. Machine learning approach to support the detection of Parkinson’s disease in IMU-based Gait analysis. Sensors. 2022;22(10):3700.

Article  PubMed  PubMed Central  Google Scholar 

Nallapuraju A, Ye CR, Gupta P, Tay A.Analysing Gait patterns of Parkinsons’ disease patients to predict Freezing of Gait (FoG) using machine learning algorithms. In: Guo H, Ren H, Wang V, Chekole EG, Lakshmanan U, editors. IRC-SET 2021. Singapore: Springer Nature; 2022. p. 269–81.

Chapter  Google Scholar 

Lee J, Oubre B, Daneault JF, Stephen CD, Schmahmann JD, Gupta AS, et al. Analysis of Gait sub-movements to estimate ataxia severity using ankle inertial data. IEEE Trans Biomed Eng. 2022. https://doi.org/10.1109/TBME.2022.3142504.

Article  PubMed  PubMed Central  Google Scholar 

Prochazka A, Dostal O, Cejnar P, Mohamed HI, Pavelek Z, Valis M, et al. Deep learning for accelerometric data assessment and ataxic Gait monitoring. IEEE Trans Neural Syst Rehabil Eng. 2021;29:360–7.

Article  PubMed  Google Scholar 

Ngo T, Pathirana PN, Horne MK, Power L, Szmulewicz DJ, Milne SC, et al. Balance deficits due to cerebellar ataxia: a machine learning and cloud-based approach. IEEE trans Biomed Eng. 2021;68(5):1507–17.

Article  PubMed  Google Scholar 

Zhao H, Wang Z, Qiu S, Shen Y, Wang J. IMU-based gait analysis for rehabilitation assessment of patients with gait disorders. In: 2017 4th International Conference on Systems and Informatics (ICSAI); 2017. p. 622–626.

İkizoğlu S, Heydarov S. Accuracy comparison of dimensionality reduction techniques to determine significant features from IMU sensor-based data to diagnose vestibular system disorders. Biomed Signal Process Control. 2020;61: 101963.

Article  Google Scholar 

Nguyen TQ, Young JH, Rodriguez A, Zupancic S, Lie DYC. Differentiation of patients with balance insufficiency (vestibular hypofunction) versus normal subjects using a low-cost small wireless wearable Gait sensor. Biosensors. 2019;9(1):29.

Article  PubMed  PubMed Central  Google Scholar 

Cohen HS, Sangi-Haghpeykar H. Walking speed and vestibular disorders in a path integration task. Gait Posture. 2011;33(2):211–3.

Article  PubMed  Google Scholar 

Hsu WC, Sugiarto T, Lin YJ, Yang FC, Lin ZY, Sun CT, et al. Multiple-wearable-sensor-based Gait classification and analysis in patients with neurological disorders. Sensors. 2018;18(10):3397.

Article  PubMed  PubMed Central  Google Scholar 

Niswander W, Wang W, Kontson K. Optimization of IMU sensor placement for the measurement of lower limb joint kinematics. Sensors. 2020;20(21):5993.

Article  PubMed  PubMed Central  Google Scholar 

Prasanth H, Caban M, Keller U, Courtine G, Ijspeert A, Vallery H, et al. Wearable sensor-based real-time gait detection: a systematic review. Sensors. 2021;21(8):2727.

Article  PubMed  PubMed Central  Google Scholar 

Bo Yu n, Tian Bao n, Dingguo Zhang n, Carender W, Sienko KH, Shull PB. Determining inertial measurement unit placement for estimating human trunk sway while standing, walking and running. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2015;2015:4651–4654.

Routhier F, Duclos NC, Lacroix M, Lettre J, Turcotte E, Hamel N, et al. Clinicians’ perspectives on inertial measurement units in clinical practice. PLOS ONE. 2020;15(11):e0241922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sulway S, Whitney SL. Advances in vestibular rehabilitation. Vestibular Disord. 2019;82:164–9.

留言 (0)

沒有登入
gif