CRISPR/Cas9: a tool to eradicate HIV-1

Global HIV and AIDS statistics—fact sheet. UNAIDS. https://www.unaids.org/en/resources/fact-sheet. Accessed 13 Aug 2021.

Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med. 1998;338:853–60. https://doi.org/10.1056/NEJM199803263381301.

Article  PubMed  Google Scholar 

Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol. 2019;9:69. https://doi.org/10.3389/fcimb.2019.00069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wearne N, Davidson B, Blockman M, Swart A, Jones ES. HIV, drugs and the kidney. Drugs Context. 2020. https://doi.org/10.7573/dic.2019-11-1.

Article  PubMed  PubMed Central  Google Scholar 

Ganta KK, Chaubey B. Endoplasmic reticulum stress leads to mitochondria-mediated apoptosis in cells treated with anti-HIV protease inhibitor ritonavir. Cell Biol Toxicol. 2019;35(3):189–204. https://doi.org/10.1007/s10565-018-09451-7.

Article  PubMed  Google Scholar 

Chawla A, Wang C, Patton C, et al. A review of long-term toxicity of antiretroviral treatment regimens and implications for an aging population. Infect Dis Ther. 2018;7:183–95. https://doi.org/10.1007/s40121-018-0201-6.

Article  PubMed  PubMed Central  Google Scholar 

Vos AG, Venter WDF. Cardiovascular toxicity of contemporary antiretroviral therapy. Curr Opin HIV AIDS. 2021;16(6):286–91. https://doi.org/10.1097/COH.0000000000000702.

Article  CAS  PubMed  Google Scholar 

Siliciano RF, Greene WC. HIV latency. Cold Spring Harb Perspect Med. 2011;1(1): a007096. https://doi.org/10.1101/cshperspect.a007096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abram ME, Ferris AL, Das K, Quinoñes O, Shao W, Tuske S, Alvord WG, Arnold E, Hughes SH. Mutations in HIV-1 reverse transcriptase affect the errors made in a single cycle of viral replication. J Virol. 2014;88(13):7589–601. https://doi.org/10.1128/JVI.00302-14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84(19):9733–48. https://doi.org/10.1128/JVI.00694-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji JP, Loeb LA. Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry. 1992;31(4):954–8. https://doi.org/10.1021/bi00119a002.

Article  CAS  PubMed  Google Scholar 

Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science. 1988;242(4882):1171–3. https://doi.org/10.1126/science.2460925.

Article  CAS  PubMed  Google Scholar 

Fraser C, Lythgoe K, Leventhal GE, Shirreff G, Hollingsworth TD, Alizon S, Bonhoeffer S. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science. 2014;343(6177):1243727. https://doi.org/10.1126/science.1243727.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarkar I, Hauber I, Hauber J, Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science. 2007;316(5833):1912–5. https://doi.org/10.1126/science.1141453.

Article  CAS  PubMed  Google Scholar 

Manjunath N, Yi G, Dang Y, Shankar P. Newer gene editing technologies toward HIV gene therapy. Viruses. 2013;5(11):2748–66. https://doi.org/10.3390/v5112748.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stone D, Kiem HP, Jerome KR. Targeted gene disruption to cure HIV. Curr Opin HIV AIDS. 2013;8(3):217–23. https://doi.org/10.1097/COH.0b013e32835f736c.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011;8(1):67–9. https://doi.org/10.1038/nmeth.1542.

Article  CAS  PubMed  Google Scholar 

Juillerat A, Dubois G, Valton J, Thomas S, Stella S, Maréchal A, et al. Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res. 2014;42(8):5390–402. https://doi.org/10.1093/nar/gku155.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014. https://doi.org/10.1126/science.1258096.

Article  PubMed  PubMed Central  Google Scholar 

Cho S, Kim S, Kim J, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2. https://doi.org/10.1038/nbt.2507.

Article  CAS  PubMed  Google Scholar 

Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. https://doi.org/10.1038/srep02510.

Article  PubMed  PubMed Central  Google Scholar 

Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82. https://doi.org/10.1007/s00239-004-0046-3.

Article  CAS  PubMed  Google Scholar 

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. https://doi.org/10.1126/science.1247997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-Guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83. https://doi.org/10.1016/j.cell.2013.02.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. XCRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51. https://doi.org/10.1016/j.cell.2013.06.044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014;42(19): e147. https://doi.org/10.1093/nar/gku749.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. 2016;23(8–9):690–5. https://doi.org/10.1038/gt.2016.41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao Z, Fan M, Das AT, Herrera-Carrillo E, Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res. 2020;48(10):5527–39. https://doi.org/10.1093/nar/gkaa226.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Efficient inhibition of HIV using CRISPR/Cas13d nuclease system. Viruses. 2021;13(9):1850. https://doi.org/10.3390/v13091850.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics. 2015;200(2):423–30. https://doi.org/10.1534/genetics.115.176594.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9. https://doi.org/10.1101/gr.171322.113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9. https://doi.org/10.1016/j.cell.2013.08.022.

Article 

留言 (0)

沒有登入
gif