The essential liaison of two copper proteins: the Cu-sensing transcription factor Mac1 and the Cu/Zn superoxide dismutase Sod1 in Saccharomyces cerevisiae

Andreadis C, Nikolaou C, Fragiadakis GS, Tsiliki G, Alexandraki D (2014) Rad9 interacts with Aft1 to facilitate genome surveillance in fragile genomic sites under non-DNA damage-inducing conditions in S. cerevisiae. Nucleic Acids Res 42:12650–12667. https://doi.org/10.1093/nar/gku915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnal N, Morel GR, de Alaniz MJT, Castillo O, Marra CA (2013) Role of copper and cholesterol association in the neurodegenerative process [WWW Document]. Int J Alzheimer’s Dis. https://doi.org/10.1155/2013/414817

Article  Google Scholar 

Ausubel FM (1987) Current protocols in molecular biology. Greene Pub Associates and Wiley-Interscience, New York

Google Scholar 

Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14:103–113. https://doi.org/10.1016/S1474-4422(14)70190-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyd SD, Calvo JS, Liu L, Ullrich MS, Skopp A, Meloni G, Winkler DD (2019) The yeast copper chaperone for copper-zinc superoxide dismutase (CCS1) is a multifunctional chaperone promoting all levels of SOD1 maturation. J Biol Chem 294:1956. https://doi.org/10.1074/jbc.RA118.005283

Article  CAS  PubMed  Google Scholar 

Brown KR, Keller GL, Pickering IJ, Harris HH, George GN, Winge DR (2002) Structures of the cuprous-thiolate clusters of the Mac1 and Ace1 transcriptional activators. Biochemistry 41:6469–6476

Article  CAS  PubMed  Google Scholar 

Che M, Wang R, Li X, Wang H-Y, Zheng XFS (2016) Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today 21:143–149. https://doi.org/10.1016/j.drudis.2015.10.001

Article  CAS  PubMed  Google Scholar 

Chung W-H (2017) Unraveling new functions of superoxide dismutase using yeast model system: beyond its conventional role in superoxide radical scavenging. J Microbiol 55:409–416. https://doi.org/10.1007/s12275-017-6647-5

Article  CAS  PubMed  Google Scholar 

Culotta VC, Klomp LWJ, Strain J, Casareno RLB, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472. https://doi.org/10.1074/jbc.272.38.23469

Article  CAS  PubMed  Google Scholar 

Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402. https://doi.org/10.1016/0092-8674(94)90345-X

Article  CAS  PubMed  Google Scholar 

Delaunay A, Isnard A-D, Toledano MB (2000) H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J 19:5157–5166. https://doi.org/10.1093/emboj/19.19.5157

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong K, Addinall SG, Lydall D, Rutherford JC (2013) The yeast copper response is regulated by DNA damage. Mol Cell Biol 33:4041–4050. https://doi.org/10.1128/MCB.00116-13

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Youssef M (2003) Wilson disease. Mayo Clin Proc 78:1126–1136. https://doi.org/10.4065/78.9.1126

Article  CAS  PubMed  Google Scholar 

Fetherolf MM, Boyd SD, Taylor AB, Kim HJ, Wohlschlegel JA, Blackburn NJ, Hart PJ, Winge DR, Winkler DD (2017) Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J Biol Chem 292:12025–12040. https://doi.org/10.1074/jbc.M117.775981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15. https://doi.org/10.1083/jcb.201102095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furukawa Y, Torres AS, O’Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881. https://doi.org/10.1038/sj.emboj.7600276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuta S, Ortiz F, Zhu Sun X, Wu H-H, Mason A, Momand J (2002) Copper uptake is required for pyrrolidine dithiocarbamate-mediated oxidation and protein level increase of p53 in cells. Biochem J 365:639–648. https://doi.org/10.1042/BJ20011251

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044. https://doi.org/10.1021/cr040410w

Article  CAS  PubMed  Google Scholar 

Georgakopoulos T, Koutroubas G, Vakonakis I, Tzermia M, Prokova V, Voutsina A, Alexandraki D (2001) Functional analysis of the Saccharomyces cerevisiae YFR021w/YGR223c/YPL100w ORF family suggests relations to mitochondrial/peroxisomal functions and amino acid signalling pathways. Yeast 18:1155–1171. https://doi.org/10.1002/yea.764

Article  CAS  PubMed  Google Scholar 

Georgatsou E, Alexandraki D (1999) Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15:573–584. https://doi.org/10.1002/(SICI)1097-0061(199905)15:7%3c573::AID-YEA404%3e3.0.CO;2-7

Article  CAS  PubMed  Google Scholar 

Gkouskou K, Fragiadakis GS, Voutsina A, Alexandraki D (2019) Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair. Curr Genet. https://doi.org/10.1007/s00294-019-01047-w

Article  PubMed  Google Scholar 

Glasauer A, Sena LA, Diebold LP, Mazar AP, Chandel NS (2014) Targeting SOD1 reduces experimental non–small-cell lung cancer [WWW Document]. J Clin Invest. 124(1):117–128. https://doi.org/10.1172/JCI71714

Article  PubMed  Google Scholar 

González-Domínguez R, García-Barrera T, Gómez-Ariza JL (2014) Characterization of metal profiles in serum during the progression of Alzheimer’s disease. Met Integr Biometal Sci 6:292–300. https://doi.org/10.1039/c3mt00301a

Article  CAS  Google Scholar 

Graden JA, Winge DR (1997) Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. Proc Natl Acad Sci U S A 94:5550–5555

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA Microarrays. J Biol Chem 275:32310–32316. https://doi.org/10.1074/jbc.M005946200

Article  CAS  PubMed  Google Scholar 

Günther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823:1416–1425. https://doi.org/10.1016/j.bbamcr.2012.01.005

Article  CAS  PubMed  Google Scholar 

Hainaut P, Mann K (2001) Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal 3:611–623. https://doi.org/10.1089/15230860152542961

Article  CAS  PubMed  Google Scholar 

Hainaut P, Rolley N, Davies M, Milner J (1995) Modulation by copper of p53 conformation and sequence-specific DNA binding: role for Cu(II)/Cu(I) redox mechanism. Oncogene 10:27–32

CAS  PubMed  Google Scholar 

Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718. https://doi.org/10.1093/jxb/erj180

Article  CAS  PubMed  Google Scholar 

Hassett R, Dix DR, Eide DJ, Kosman DJ (2000) The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351:477–484. https://doi.org/10.1042/bj3510477

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heredia J, Crooks M, Zhu Z (2001) Phosphorylation and Cu+Coordination-dependent DNA binding of the transcription factor Mac1p in the regulation of copper transport. J Biol Chem 276:8793–8797. https://doi.org/10.1074/jbc.M008179200

Article  CAS  PubMed  Google Scholar 

James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen LT, Winge DR (1998) Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J 17:5400–5408. https://doi.org/10.1093/emboj/17.18.5400

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jungmann J, Reins HA, Lee J, Romeo A, Hassett R, Kosman D, Jentsch S (1993) MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J 12:5051–5056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, Liew CJ, Sato S, Patronas N (2008) Neonatal diagnosis and treatment of menkes disease. N Engl J Med 358:605–614. https://doi.org/10.1056/NEJMoa070613

Article  CAS  PubMed 

留言 (0)

沒有登入
gif