Children’s inhibition skills are associated with their P3a latency—results from an exploratory study

Barceló FA. Predictive processing account of card sorting: fast proactive and reactive frontoparietal cortical dynamics during inference and learning of perceptual categories. J Cogn Neurosci. 2020;33(9):1636–56. https://doi.org/10.1162/jocn_a_01662.

Article  Google Scholar 

Knight RT. Contribution of human hippocampal region to novelty detection. Nature. 1996;383:256–9. https://doi.org/10.1038/383256a0.

Article  CAS  PubMed  Google Scholar 

Knight RT. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol Evoked Potentials. 1984;59(1):9–20. https://doi.org/10.1016/0168-5597(84)90016-9.

Article  CAS  PubMed  Google Scholar 

Løvstad M, Funderud I, Lindgren M, Endestad T, Due-Tønnessen P, Meling T, et al. Contribution of subregions of human frontal cortex to novelty processing. J Cogn Neurosci. 2012;24(2):378–95. https://doi.org/10.1162/jocn_a_00099.

Article  PubMed  Google Scholar 

Mecklinger A, Ullsperger P. The P300 to novel and target events: a spatio-temporal dipole model analysis. Neurorep Int J Rapid Commun Res Neurosci. 1995;7(1):241–5.

CAS  Google Scholar 

Schröger E, Giard MH, Wolff C. Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol. 2000;111(8):1450–60. https://doi.org/10.1016/S1388-2457(00)00337-0.

Article  PubMed  Google Scholar 

Volpe U, Mucci A, Bucci P, Merlotti E, Galderisi S, Maj M. The cortical generators of P3a and P3b: a LORETA study. Brain Res Bull. 2007;73:220–30. https://doi.org/10.1016/j.brainresbull.2007.03.003.

Article  CAS  PubMed  Google Scholar 

Stuss D, Alexander M. Executive functions and the frontal lobes: a conceptual view. Psychol Res. 2000;63:289–98. https://doi.org/10.1007/s004269900007.

Article  CAS  PubMed  Google Scholar 

Badre D, Wagner AD. Selection, integration, and conflict monitoring: assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron. 2004;41(3):473–87. https://doi.org/10.1016/S0896-6273(03)00851-1.

Article  CAS  PubMed  Google Scholar 

Saarikivi K, Putkinen V, Tervaniemi M, Huotilainen M. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination. Eur J Neurosci. 2016;44(2):1815–25. https://doi.org/10.1111/ejn.13176.

Article  PubMed  Google Scholar 

Barceló F, Periáñez JA, Knight RT. Think differently: a brain orienting response to task novelty. NeuroReport. 2002;13(15):1887–92. https://doi.org/10.1097/00001756-200210280-00011.

Article  PubMed  Google Scholar 

Wild-Wall N, Oades RD, Schmidt-Wessels M, Christiansen H, Falkenstein M. Neural activity associated with executive functions in adolescents with attention-deficit/hyperactivity disorder (ADHD). Int J Psychophysiol. 2009;74(1):19–27. https://doi.org/10.1016/j.ijpsycho.2009.06.003.

Article  PubMed  Google Scholar 

Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48. https://doi.org/10.1016/j.clinph.2007.04.019.

Article  PubMed  PubMed Central  Google Scholar 

Barceló F, Escera C, Corral MJ, Periáñez JA. Task switching and novelty processing activate a common neural network for cognitive control. J Cogn Neurosci. 2006;18(10):1734–48. https://doi.org/10.1162/jocn.2006.18.10.1734.

Article  PubMed  Google Scholar 

Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol. 2000;54:241–57. https://doi.org/10.1016/S0301-0511(00)00058-2.

Article  CAS  PubMed  Google Scholar 

Sheridan M, Kharitonova M, Martin RE, Chatterjee A, Gabrieli JDE. Neural substrates of the development of cognitive control in children ages 5–10 years. J Cogn Neurosci. 2014;26:1840–50. https://doi.org/10.1162/jocn_a_00597.

Article  PubMed  PubMed Central  Google Scholar 

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100. https://doi.org/10.1006/cogp.1999.0734.

Article  CAS  PubMed  Google Scholar 

Lee K, Bull R, Ho RMH. Developmental changes in executive functioning. Child Dev. 2013;84(6):1933–53. https://doi.org/10.1111/cdev.12096.

Article  PubMed  Google Scholar 

Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68. https://doi.org/10.1146/annurev-psych-113011-143750.

Article  PubMed  Google Scholar 

Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage. 2001;13(2):250–61. https://doi.org/10.1006/nimg.2000.0685.

Article  CAS  PubMed  Google Scholar 

Nigg JT, Wong MM, Martel MM, Jester JM, Puttler LI, Glass JM, et al. Poor response inhibition as a predictor of problem drinking and illicit drug use in adolescents at risk for alcoholism and other substance use disorders. J Am Acad Child Adolesc Psychiatry. 2006;45(4):468–75. https://doi.org/10.1097/01.chi.0000199028.76452.a9.

Article  PubMed  Google Scholar 

Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997;121(1):65–94. https://doi.org/10.1037/0033-2909.121.1.65.

Article  PubMed  Google Scholar 

Friedman NP, Miyake A. The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen. 2004;133(1):101–35. https://doi.org/10.1037/0096-3445.133.1.101.

Article  PubMed  Google Scholar 

Nigg JT. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull. 2000;126(2):220–46. https://doi.org/10.1037/0033-2909.126.2.220.

Article  CAS  PubMed  Google Scholar 

Posner MI, DiGirolamo GJ. Executive attention: conflict, target detection, and cognitive control. In: Parasuraman R, editor. The attentive brain. Cambridge: The MIT Press; 1998. p. 401–23.

Google Scholar 

Rueda MR, Fan J, McCandliss BD, Halparin JD, Gruber DB, Lercari LP, et al. Development of attentional networks in childhood. Neuropsychologia. 2004;42(8):1029–40. https://doi.org/10.1016/j.neuropsychologia.2003.12.012.

Article  PubMed  Google Scholar 

Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychology. 1935;18(6):643–62. https://doi.org/10.1037/h0054651.

Article  Google Scholar 

Hallett PE. Primary and secondary saccades to goals defined by instructions. Vis Res. 1978;18(10):1279–96. https://doi.org/10.1016/0042-6989(78)90218-3.

Article  CAS  PubMed  Google Scholar 

Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9. https://doi.org/10.3758/BF03203267.

Article  Google Scholar 

Jersild AT. Mental set and shift. Archives of Psychology. 1927.

Spector A, Biederman I. Mental set and mental shift revisited. Am J Psychol. 1976;89(4):669–79. https://doi.org/10.2307/1421465.

Article  Google Scholar 

Rogers RD, Monsell S. Costs of a predictible switch between simple cognitive tasks. J Exp Psychol Gen. 1995;124(2):207–31. https://doi.org/10.1037/0096-3445.124.2.207.

Article  Google Scholar 

Grant DA, Berg EA. A behavioral analysis of degree of reinforcement and ease of shifting to new responses to new responses in a weigl-type card-sorting problem. J Exp Psychol. 1948;38:404–11. https://doi.org/10.1037/h0059831.

Article  CAS  PubMed  Google Scholar 

Brocki KC, Bohlin G. Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev Neuropsychol. 2004;26:571–93. https://doi.org/10.1207/s15326942dn2602_3.

Article  PubMed  Google Scholar 

Welsh MC, Pennington BF, Groisser DB. A normative-developmental study of executive function: a window on prefrontal function in children. Dev Neuropsychol. 1991;7(2):131–49. https://doi.org/10.1080/87565649109540483.

Article  Google Scholar 

Anderson V. Assessing executive functions in children: biological, psychological, and developmental considerations. Pediatr Rehabil. 2001;4(3):119–36.

Article  CAS  PubMed  Google Scholar 

Fernández García L, Merchán A, Phillips-Silver J, Daza González MT. Neuropsychological development of cool and hot executive functions between 6 and 12 years of age: a systematic review. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.687337.

Article  PubMed  PubMed Central  Google Scholar 

Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, et al. Neural development of selective attention and response inhibition. Neuroimage. 2003;20(2):737–51. https://doi.org/10.1016/S1053-8119(03)00404-X.

Article  PubMed  Google Scholar 

Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JDE. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002;33(2):301–11. https://doi.org/10.1016/S0896-6273(01)00583-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durston S, Thomas KM, Yang Y, Uluğ AM, Zimmerman RD, Casey B. A neural basis for the development of inhibitory control. Dev Sci. 2002;5:F9–16. https://doi.org/10.1111/1467-7687.00235.

Article  Google Scholar 

留言 (0)

沒有登入
gif