Applied Sciences, Vol. 12, Pages 12291: Numerical Simulation and Experimental Measurements of Dynamic Responses of Asphalt Pavement in Dry and Saturated Conditions under Full-Scale Accelerated Loading

Figure 1. Internal pressure distribution of the circular pore in a plate [16]. Figure 1. Internal pressure distribution of the circular pore in a plate [16]. Applsci 12 12291 g001

Figure 2. The FEM model of asphalt pavement structure: (a) Boundary conditions and load positions; (b) Meshing.

Figure 2. The FEM model of asphalt pavement structure: (a) Boundary conditions and load positions; (b) Meshing.

Applsci 12 12291 g002

Figure 3. The vehicle loading model and the location of testing profile A (Unit: mm).

Figure 3. The vehicle loading model and the location of testing profile A (Unit: mm).

Applsci 12 12291 g003

Figure 4. Full-scale accelerated loading test system.

Figure 4. Full-scale accelerated loading test system.

Applsci 12 12291 g004

Figure 5. Layout of the buried sensors: (a) Horizontal layout; (b) Relative position between vehicle tires and buried sensors.

Figure 5. Layout of the buried sensors: (a) Horizontal layout; (b) Relative position between vehicle tires and buried sensors.

Applsci 12 12291 g005

Figure 6. Buried sensors: (a) Longitudinal sensor; (b) Transverse sensor; (c) Vertical sensor; (d) Pore water pressure sensor; (e) Stress sensor.

Figure 6. Buried sensors: (a) Longitudinal sensor; (b) Transverse sensor; (c) Vertical sensor; (d) Pore water pressure sensor; (e) Stress sensor.

Applsci 12 12291 g006

Figure 7. Time–history curves of dynamic response indicators for asphalt pavement in dry and saturated conditions: (a) Vertical stress, dry; (b) Vertical stress, saturated; (c) Vertical strain, dry; (d) Vertical strain, saturated; (e) Transverse strain, dry; (f) Transverse strain, saturated; (g) Pore water pressure, saturated.

Figure 7. Time–history curves of dynamic response indicators for asphalt pavement in dry and saturated conditions: (a) Vertical stress, dry; (b) Vertical stress, saturated; (c) Vertical strain, dry; (d) Vertical strain, saturated; (e) Transverse strain, dry; (f) Transverse strain, saturated; (g) Pore water pressure, saturated.

Applsci 12 12291 g007aApplsci 12 12291 g007b

Figure 8. Variation trends of pore water pressure in saturated asphalt pavement: (a) Surface layer (h = 0 m); (b) Upper layer bottom (h = 0.05 m); (c) Middle layer bottom (h = 0.11 m); (d) Lower layer bottom (h = 0.18 m).

Figure 8. Variation trends of pore water pressure in saturated asphalt pavement: (a) Surface layer (h = 0 m); (b) Upper layer bottom (h = 0.05 m); (c) Middle layer bottom (h = 0.11 m); (d) Lower layer bottom (h = 0.18 m).

Applsci 12 12291 g008

Figure 9. Variation trends of vertical stress in dry and saturated asphalt pavement: (a) Surface layer (h = 0 m); (b) Upper layer bottom (h = 0.05 m); (c) Middle layer bottom (h = 0.11 m); (d) Lower layer bottom (h = 0.18 m).

Figure 9. Variation trends of vertical stress in dry and saturated asphalt pavement: (a) Surface layer (h = 0 m); (b) Upper layer bottom (h = 0.05 m); (c) Middle layer bottom (h = 0.11 m); (d) Lower layer bottom (h = 0.18 m).

Applsci 12 12291 g009

Figure 10. Variation trends of vertical strain in dry and saturated asphalt pavement: (a) Surface layer (h = 0m); (b) Upper layer bottom (h = 0.05m); (c) Middle layer bottom (h = 0.11m); (d) Lower layer bottom (h = 0.18m).

Figure 10. Variation trends of vertical strain in dry and saturated asphalt pavement: (a) Surface layer (h = 0m); (b) Upper layer bottom (h = 0.05m); (c) Middle layer bottom (h = 0.11m); (d) Lower layer bottom (h = 0.18m).

Applsci 12 12291 g010

Figure 11. Variation trends of transverse strain in dry and saturated asphalt pavement: (a) Surface layer (h = 0 m); (b) Upper layer bottom (h = 0.05 m); (c) Middle layer bottom (h = 0.11 m); (d) Lower layer bottom (h = 0.18 m).

Figure 11. Variation trends of transverse strain in dry and saturated asphalt pavement: (a) Surface layer (h = 0 m); (b) Upper layer bottom (h = 0.05 m); (c) Middle layer bottom (h = 0.11 m); (d) Lower layer bottom (h = 0.18 m).

Applsci 12 12291 g011

Figure 12. Variations of dynamic response magnitudes with vehicle load obtained from field tests (controlling vehicle speed at 20 km/h): (a) Pore water pressure; (b) Vertical stress; (c) Vertical strain; (d) Transverse strain.

Figure 12. Variations of dynamic response magnitudes with vehicle load obtained from field tests (controlling vehicle speed at 20 km/h): (a) Pore water pressure; (b) Vertical stress; (c) Vertical strain; (d) Transverse strain.

Applsci 12 12291 g012aApplsci 12 12291 g012b

Figure 13. Variations of dynamic response magnitudes with vehicle speed obtained from field tests (controlling vehicle load at 0.7 MPa): (a) Pore water pressure; (b) Vertical stress; (c) Vertical strain; (d) Transverse strain.

Figure 13. Variations of dynamic response magnitudes with vehicle speed obtained from field tests (controlling vehicle load at 0.7 MPa): (a) Pore water pressure; (b) Vertical stress; (c) Vertical strain; (d) Transverse strain.

Applsci 12 12291 g013

Figure 14. Vertical distributions of dynamic responses along depth in asphalt pavement: (a) Vertical stress; (b) Vertical strain; (c) Transverse strain; (d) Pore water pressure.

Figure 14. Vertical distributions of dynamic responses along depth in asphalt pavement: (a) Vertical stress; (b) Vertical strain; (c) Transverse strain; (d) Pore water pressure.

Applsci 12 12291 g014aApplsci 12 12291 g014b

Figure 15. Transverse distributions of dynamic responses at the bottom of the upper layer inside dry and saturated asphalt pavement (h = 0.05 m): (a) Vertical stress; (b) Vertical strain; (c) Transverse strain; (d) Pore water pressure.

Figure 15. Transverse distributions of dynamic responses at the bottom of the upper layer inside dry and saturated asphalt pavement (h = 0.05 m): (a) Vertical stress; (b) Vertical strain; (c) Transverse strain; (d) Pore water pressure.

Applsci 12 12291 g015

Table 1. Structure and material parameters of FEM model for asphalt pavement.

Table 1. Structure and material parameters of FEM model for asphalt pavement.

No.Structural LayerThickness (cm)Modulus (MPa)Poisson’s RatioDensity (kg/m3)Damping RatioPorosity (%)Permeability (×10–8 m/s)Water Density (kg/m3)1Upper
SMA-16514000.3524000.054.02.1310002Middle
AC-20613000.3524000.054.51.0710003Lower
AC-25712000.3524000.055.01.0910004Base3513000.2521000.052.00.110005Subbase206000.319000.053.00.110006Subgrade280500.418000.054.00.151000

Table 2. Vehicle speed and load duration.

Table 2. Vehicle speed and load duration.

Speed (km/h)Load Duration (s)Moment Corresponding to Maximum Load (s)200.0360.068600.0120.0561000.00720.0536

Table 3. Field test protocol.

Table 3. Field test protocol.

No.Controlled ParametersAdjustable Parameters1Motor RPM: 580 r/min
(Vehicle speed: 20 km/h)Hydraulic load: 8.5/9.0/9.5/10.0/10.5/11.0/11.5 MPa
(Single-wheel grounding pressure: 0.675/0.701/0.728/0.754/0.780/0.807/0.833 MPa)2Hydraulic load: 9.0 MPa
(Single-wheel grounding pressure: 0.7 MPa)Motor RPM: 200/240/280/360/440/540 r/min
(Vehicle speed: 6.98/8.42/9.77/12.47/15.07/18.50 km/h)

Table 4. Comparison of responses obtained from numerical simulation and field measurements.

Table 4. Comparison of responses obtained from numerical simulation and field measurements.

No.IndicatorMagnitudeNumerical SimulationField TestDrySaturatedDrySaturated1Vertical stress0.650 MPa0.675 MPa0.491 MPa0.530 MPa2Vertical strain185.6 με194.6 με353.3 με364.7 με3Transverse strain236.9 με197.3 με135.1 με145.6 με4PositivePore water pressure-42.5 kPa-25.29 kPa5Negative-45.4 kPa-7.1 kPa

留言 (0)

沒有登入
gif