Device-based neuromodulation for cardiovascular diseases and patient’ s age

[1] Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 2009; 54: 1747−62. doi: 10.1016/j.jacc.2009.05.015 [2]

Verrier R. Role of the Autonomic Nervous System in Cardiovascular Diseases. In Advances in Noninvasive Electrocardiographic Monitoring Techniques. Developments in Cardiovascular Medicine; Osterhues HH, Hombach V, Moss AJ, Eds. ; Springer, Dordrecht, 2000; 59−68.

[3] Parashar R, Amir M, Pakhare A, et al. Age related changes in autonomic functions. J Clin Diagn Res 2016; 10: 11−15. doi: 10.1111/crj.12171 [4] Baker SE, Limberg JK, Dillon GA, et al. Aging alters the relative contributions of the sympathetic and parasympathetic nervous system to blood pressure control in women. Hypertension 2018; 72: 1236−1242. doi: 10.1161/HYPERTENSIONAHA.118.11550 [5]

Elia A, Cannavo A, Gambino G, et al. Aging is associated with cardiac autonomic nerve fiber depletion and reduced cardiac and circulating BDNF levels. J Geriatr Cardiol 2021; 18: 549−559.

[6] Kearney P, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217−223. doi: 10.1016/S0140-6736(05)17741-1 [7] Maver J, Struci M, Accetto R. Autonomic nervous system in normotensive subjects with a family history of hypertension. Clin Auton Res 2004; 14: 369−375. doi: 10.1007/s10286-004-0185-z [8] Fisher JP, Paton JFR. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens 2012; 26: 463−75. doi: 10.1038/jhh.2011.66 [9]

Palatini P, Julius S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Sci Inc 2009; 11: 199−205.

[10] Smith PA, Graham LN, Mackintosh AF, et al. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 2004; 17: 217−222. doi: 10.1016/j.amjhyper.2003.10.010 [11] Grassi G, Cattaneo BM, Seravalle G, et al. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31: 68−72. doi: 10.1161/01.HYP.31.1.68 [12]

Grassi G, Colombo M, Seravalle G, et al. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension 1998; 31: 64−67.

[13] Burns J, Sivananthan MU, Ball SG, et al. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007; 115: 1999−2005. doi: 10.1161/CIRCULATIONAHA.106.668863 [14]

Quarti-Trevano F, Seravalle G, Grassi G. Clinical Relevance of the Sympathetic-Vascular Interactions in Health and Disease. Biomedicines 2021; 13,9: 1007.

[15] Mancia G, Grassi G. The autonomic nervous system and hypertension. Circulation research 2014; 114: 1804−1814. doi: 10.1161/CIRCRESAHA.114.302524 [16]

Kiuchi MG, Ho JK, Nolde JM, et al. Sympathetic activation in hypertensive chronic kidney disease - a stimulus for cardiac arrhythmias and sudden cardiac death? Front Physiol 2020; 10: 1546.

[17] Lu J, Ling Z, Chen W, et al. Effects of renal sympathetic denervation using saline-irrigated radiofrequency ablation catheter on the activity of the renin-angiotensin system and endothelin-1. J Renin Angiotensin Aldosterone Syst 2014; 15: 532−539. doi: 10.1177/1470320313506480 [18] [19]

Kuzmenko NV, Pliss MG, Tsyrlin VA Changes in the autonomic control of the cardiovascular system in human aging. meta-analysis. Adv Gerontol 2020; 33: 748−760.

[20] Bhatt DL, Kandzari DE, O'Neill WW, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014; 370: 1393−401. doi: 10.1056/NEJMoa1402670 [21]

Mahfoud F, Götzinger F, Millenaar D. Meta-analysis in renal denervation - or how to compare apples with oranges? Cardiovasc Revasc Med 2022; 34: 119−120.

[22] Kandzari DE, Bhatt DL, Brar S, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 2015; 36: 219−27. doi: 10.1093/eurheartj/ehu441 [23]

Mahfoud F, Mancia G, Schmieder R, et al. Renal denervation in high-risk patients with hypertension. J Am Coll Cardiol 2020; 75: 2879−2888.

[24] Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol 2007; 293: R3−R12. doi: 10.1152/ajpregu.00031.2007 [25]

de Leeuw PW, Bisognano JD, Bakris GL, et al. DEBuT-HT and Rheos trial investigators. sustained reduction of blood pressure with baroreceptor activation therapy:results of the 6-year open follow-up. Hypertension 2017; 69: 836−843.

[26]

Vaillancourt M, Chia P, Sarji S, et al. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir Res 2017; 18: 201.

[27] Rudner XL, Berkowitz DE, Booth JV, et al. Subtype specific regulation of human vascular alpha(1)-adrenergic receptors by vessel bed and age. Circulation 1999; 100: 2336−2343. doi: 10.1161/01.CIR.100.23.2336 [28] Juratsch CE, Jengo JA, Castagna J, Laks MM. Experimental pulmonary hypertension produced by surgical and chemical denervation of the pulmonary vasculature. Chest 1980; 77: 525−530. doi: 10.1378/chest.77.4.525 [29]

Goncharova NS, Moiseeva OM, Condori Leandro HI, et al. Electrical stimulation-guided approach to pulmonary artery catheter ablation in patients with idiopathic pulmoary arterial hypertension: A pilot feasibility study with a 12-Month follow-ip. Biomed Res Int 2020; 2020: 8919515.

[30] Allen KM, Wharton J, Polak JM, Haworth SG. A study of nerves containing peptides in the pulmonary vasculature of healthy infants and children and of those with pulmonary hypertension. Br Heart J 1989; 62: 353−360. doi: 10.1136/hrt.62.5.353 [31]

Kuzmenko NV, Pliss MG, Tsyrlin VA. Changes in the autonomic control of the cardiovascular system in human aging. meta-analysis. Adv Gerontol 2020; 33: 748−760.

[32] [33] Eschenhagen T. Beta-adrenergic signaling in heart failure-adapt or die. Nat Med 2008; 14: 485−487. doi: 10.1038/nm0508-485 [34] Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 1971; 285: 877−883. doi: 10.1056/NEJM197110142851602 [35] Porter TR, Eckberg DL, Fritsch JM, et al. Autonomic pathophysiology in heart failure patients. Sympathetic-cholinergic interrelations. J Clin Invest 1990; 85: 1362−1371. doi: 10.1172/JCI114580 [36] Schwartz PJ, De Ferrari GM, Sanzo A, et al. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 2008; 10: 884−891. doi: 10.1016/j.ejheart.2008.07.016 [37]

De Ferrari GM, Crijns HJ, Borggrefe M, et al. CardioFit multicenter trial investigators. chronic vagus nerve stimulation:a new and promising therapeutic approach for chronic heart failure. Eur Heart J 2011; 32: 847−855.

[38] Dicarlo L, Libbus I, Amurthur B, et al. Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM-HF study. J Card Fail 2013; 19: 655−660. doi: 10.1016/j.cardfail.2013.07.002 [39] Premchand RK, Sharma K, Mittal S, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J Card Fail 2014; 20: 808−816. doi: 10.1016/j.cardfail.2014.08.009 [40] Zannad F, De Ferrari GM, Tuinenburg AE, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur Heart J 2015; 36: 425−433. doi: 10.1093/eurheartj/ehu345 [41] De Ferrari GM, Stolen C, Tuinenburg AE, et al. Long-term vagal stimulation for heart failure: eighteen months results from the Neural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. Int J Cardiol 2017; 244: 229−234. doi: 10.1016/j.ijcard.2017.06.036 [42] Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al. Vagus nerve stimulation for the treatment of heart failure: The INOVATE-HF Trial. J Am Coll Cardiol 2016; 68: 149−158. doi: 10.1016/j.jacc.2016.03.525 [43] Gronda E, Seravalle G, Brambilla G, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail 2014; 16: 977−983. doi: 10.1002/ejhf.138 [44] Abraham WT, Zile MR, Weaver FA, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 2015; 3: 487−496. doi: 10.1016/j.jchf.2015.02.006 [45] Zile MR, Lindenfeld J, Weaver FA, et al. Baroreflex activation therapy in patients with heart failure with reduced ejection fraction. J Am Coll Cardiol 2020; 76: 1−13. doi: 10.1016/j.jacc.2020.05.015 [46] Tse HF, Turner S, Sanders P, et al. Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study): first-in-man experience. Heart Rhythm 2015; 12: 588−595. doi: 10.1016/j.hrthm.2014.12.014 [47]

Zipes DP, Neuzil P, Theres H, et al. DEFEAT-HF Trial Investigators. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: The DEFEAT-HF Study. JACC Heart Fail 2016; 4: 129−136.

[48] [49] Fudim M, Ganesh A, Green C, et al. Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur Heart J 2018; 39: 4255−4256. doi: 10.1093/eurheartj/ehy682 [50] Fudim M, Boortz-Marx RL, Ganesh A, et al. Splanchnic nerve block for chronic heart failure. JACC Heart Fail 2020; 8: 742−752. doi: 10.1016/j.jchf.2020.04.010 [51] Chen W, Ling Z, Xu Y, et al. Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: A prospective, randomized, controlled, pilot study. Catheter Cardiovasc Interv 2017; 89: E153−E161. doi: 10.1002/ccd.26475 [52] Gao JQ, Yang W, Liu ZJ. Percutaneous renal artery denervation in patients with chronic systolic heart failure: A randomized controlled trial. Cardiol J 2019; 26: 503−510. doi: 10.5603/CJ.a2018.0028 [53] Feyz L, Nannan Panday R, Henneman M, et al. Endovascular renal sympathetic denervation to improve heart failure with reduced ejection fraction: the IMPROVE-HF-I study. Neth Heart J 2022; 30: 149−159. doi: 10.1007/s12471-021-01633-z [54] Spadaro AG, Bocchi EA, Souza GE, et al. Renal denervation in patients with heart failure secondary to Chagas' disease: A pilot randomized controlled trial. Catheter Cardiovasc Interv 2019; 94: 644−650. doi: 10.1002/ccd.28393 [55]

Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. ADHERE Scientific advisory committee and investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE). J Am Coll Cardiol 2006; 47: 76−84.

[56] Kresoja KP, Rommel KP, Fengler K, et al. Renal Sympathetic denervation in patients with heart failure with preserved ejection fraction. Circ Heart Fail 2021; 14: e007421. doi: 10.1161/CIRCHEARTFAILURE.120.007421 [57] Patel HC, Rosen SD, Hayward C, et al. Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur J Heart Fail 2016; 18: 703−12. doi: 10.1002/ejhf.502 [58] Mansoor GA. Orthostatic hypotension due to autonomic disorders in the hypertension clinic. Am J Hypertens 2006; 19: 319−326. doi: 10.1016/j.amjhyper.2005.09.019 [59] Robertson D, DesJardin JA, Lichtenstein MJ. Distribution and observed associations of orthostatic blood pressure changes in elderly general medicine outpatients. Am J Med Sci 1998; 315: 287−295. doi: 10.1097/00000441-199805000-00001 [60] Phillips AA, Squair JW, Sayenko DG, et al. An autonomic neuroprosthesis: noninvasive electrical spinal cord stimulation restores autonomic cardiovascular function in individuals with spinal cord injury. J Neurotrauma 2018; 35: 446−451. doi: 10.1089/neu.2017.5082 [61] Mikhaylov EN, Moshonkina TR, Zharova EN, et al. Acute Cardiovascular effects of non-invasive electrical spinal cord stimulation: results from a pilot study in humans. J Cardiovasc Transl Res 2020; 13: 891−893. doi: 10.1007/s12265-020-10014-7 [62] [63] Mannheimer C, Camici P, Chester MR, et al. The problem of chronic refractory angina; report from the ESC Joint study group on the treatment of refractory angina. Eur Heart J 2002; 23: 355−370. doi: 10.1053/euhj.2001.2706 [64] [65] [66]

Taylor RS, De Vries J, Buchser E, Dejongste MJL. Spinal cord stimulation in the treatment of refractory angina: systematic review and meta-analysis of randomised controlled trials. BMC Cardiovasc Disord 2009; 9: 13.

[67]

Jessurun GA, Hautvast RW, Tio RA, DeJongste MJ. Electrical neuromodulation improves myocardial perfusion and ameliorates refractory angina pectoris in patients with syndrome X: fad or future? Eur J Pain 2003; 7: 507−512.

[68] Foreman RD, Linderoth B, Ardell JL, et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res 2000; 47: 367−375. doi: 10.1016/S0008-6363(00)00095-X [69] DeJongste MJ. Efficacy, safety and mechanisms of spinal cord stimulation used as an additional therapy for patients suffering from chronic refractory angina pectoris. Neuromodulation 1999; 2: 188−192. doi: 10.1046/j.1525-1403.1999.00188.x [70] Picard F, Sayah N, Spagnoli V, et al. Vasospastic angina: A literature review of current evidence. Arch Cardiovasc Dis 2019; 112: 44−55. doi: 10.1016/j.acvd.2018.08.002 [71]

Liu L, Nattel S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol 1997; 273: H805−H816.

[72]

Andrus EC, Carter EP. With an Appendix by Harold A. Wheeler PD. The refractory period of the normally-beating dog’s auricle; with a note on the occurrence of auricular fibrillation following a single stimulus. J Exp Med 1930; 51: 357−367.

[73] Stavrakis S, Stoner JA, Humphrey MB, et al. TREAT AF (Transcutaneous electrical vagus nerve stimulation to suppress atrial fibrillation): A randomized clinical trial. JACC Clin Electrophysiol 2020; 6: 282−291. doi: 10.1016/j.jacep.2019.11.008 [74]

Ferrara N, Komici K, Corbi G, et al. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 2014; 4: 396.

[75] Chadda KR, Ajijola OA, Vaseghi M, et al. Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Res Rev 2018; 48: 40−50. doi: 10.1016/j.arr.2018.09.005 [76] Brodde OE, Konschak U, Becker K, et al. Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest 1998; 101: 471−478. doi: 10.1172/JCI1113 [77] [78] Franciosi S, Perry FKG, Roston TM, et al. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci 2017; 205: 1−11. doi: 10.1016/j.autneu.2017.03.005 [79] Barta J, Brat R. Assessment of the effect of left atrial cryoablation enhanced by ganglionated plexi ablation in the treatment of atrial fibrillation in patients undergoing open heart surgery. J Cardiothorac Surg 2017; 12: 69. doi: 10.1186/s13019-017-0625-1 [80] Driessen AHG, Berger WR, Krul SPJ, et al. Ganglion plexus ablation in advanced atrial fibrillation: The AFACT Study. J Am Coll Cardiol 2016; 68: 1155−1165. doi: 10.1016/j.jacc.2016.06.036 [81]

Gelsomino S, Lozekoot P, La Meir M, et al. Is ganglionated plexi ablation during Maze IV procedure beneficial for postoperative long-term stable sinus rhythm? Int J Cardiol 2015; 192: 40−48.

[82] Mikhaylov E, Kanidieva A, Sviridova N, et al. Outcome of anatomic ganglionated plexi ablation to treat paroxysmal atrial fibrillation: a 3-year follow-up study. Europace 2011; 13: 362−370. doi: 10.1093/europace/euq416 [83] Katritsis DG, Pokushalov E, Romanov A, et al. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J Am Coll Cardiol 2013; 62: 2318−2325. doi: 10.1016/j.jacc.2013.06.053 [84] Onorati F, Curcio A, Santarpino G, et al. Routine ganglionic plexi ablation during Maze procedure improves hospital and early follow-up results of mitral surgery. J Thorac Cardiovasc Surg 2008; 136: 408−418. doi: 10.1016/j.jtcvs.2008.03.022 [85] Pokushalov E, Romanov A, Corbucci G, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol 2012; 60: 1163−1170. doi: 10.1016/j.jacc.2012.05.036 [86] Pokushalov E, Romanov A, Katritsis DG, et al. Renal denervation for improving outcomes of cathe

留言 (0)

沒有登入
gif