An active glutamine/α-ketoglutarate/HIF-1α axis prevents pregnancy loss by triggering decidual IGF1+GDF15+NK cell differentiation

Musallam R, Salem N, Al Halol R, Al Deeb H, Bottcher B, AlHamaida H (2018) Management of pregnancy loss in the first trimester: a retrospective audit. Lancet (London, England) 391(Suppl 2):S34. https://doi.org/10.1016/S0140-6736(18)30400-8

Article  PubMed  Google Scholar 

Garrido-Gimenez C, Alijotas-Reig J (2015) Recurrent miscarriage: causes, evaluation and management. Postgrad Med J 91:151–162. https://doi.org/10.1136/postgradmedj-2014-132672

Article  PubMed  Google Scholar 

Gellersen B, Brosens JJ (2014) Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 35:851–905. https://doi.org/10.1210/er.2014-1045

Article  CAS  PubMed  Google Scholar 

Tao Y, Li Y-H, Piao H-L, Zhou W-J, Zhang D, Fu Q et al (2015) CD56(bright)CD25+ NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy. Cell Mol Immunol 12:77–86. https://doi.org/10.1038/cmi.2014.26

Article  CAS  PubMed  Google Scholar 

Keskin DB, Allan DSJ, Rybalov B, Andzelm MM, Stern JNH, Kopcow HD et al (2007) TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16− NK cells with similarities to decidual NK cells. Proc Natl Acad Sci USA 104:3378–3383

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jabrane-Ferrat N (2019) Features of human decidual NK cells in healthy pregnancy and during viral infection. Front Immunol 10:1397. https://doi.org/10.3389/fimmu.2019.01397

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erlebacher A (2013) Immunology of the maternal–fetal interface. Annu Rev Immunol 31:387–411. https://doi.org/10.1146/annurev-immunol-032712-100003

Article  CAS  PubMed  Google Scholar 

Zhou Y, Fu B, Xu X, Zhang J, Tong X, Wang Y et al (2020) PBX1 expression in uterine natural killer cells drives fetal growth. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aax1798

Article  PubMed  PubMed Central  Google Scholar 

Lu H, Yang H-L, Zhou W-J, Lai Z-Z, Qiu X-M, Fu Q et al (2020) Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence. Autophagy. https://doi.org/10.1080/15548627.2020.1833515

Article  PubMed  PubMed Central  Google Scholar 

Fu B, Zhou Y, Ni X, Tong X, Xu X, Dong Z et al (2017) Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity. https://doi.org/10.1016/j.immuni.2017.11.018

Article  PubMed  PubMed Central  Google Scholar 

Cartwright JE, James-Allan L, Buckley RJ, Wallace AE (2017) The role of decidual NK cells in pregnancies with impaired vascular remodelling. J Reprod Immunol 119:81–84. https://doi.org/10.1016/j.jri.2016.09.002

Article  CAS  PubMed  Google Scholar 

Seshadri S, Sunkara SK (2014) Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update 20:429–438. https://doi.org/10.1093/humupd/dmt056

Article  PubMed  Google Scholar 

Wang F, Jia W, Fan M, Shao X, Li Z, Liu Y et al (2021) Single-cell Immune landscape of human recurrent miscarriage. Genom Proteom Bioinform 19:208–222. https://doi.org/10.1016/j.gpb.2020.11.002

Article  Google Scholar 

Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB et al (2018) Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563:347–353. https://doi.org/10.1038/s41586-018-0698-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suryawanshi H, Morozov P, Straus A, Sahasrabudhe N, Max KEA, Garzia A et al (2018) A single-cell survey of the human first-trimester placenta and decidua. Sci Adv 4:eaau4788. https://doi.org/10.1126/sciadv.aau4788

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du L, Deng W, Zeng S, Xu P, Huang L, Liang Y et al (2021) Single-cell transcriptome analysis reveals defective decidua stromal niche attributes to recurrent spontaneous abortion. Cell Prolif 54:e13125. https://doi.org/10.1111/cpr.13125

Article  CAS  PubMed  PubMed Central  Google Scholar 

Assmann N, O’Brien KL, Donnelly RP, Dyck L, Zaiatz-Bittencourt V, Loftus RM et al (2017) Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol 18:1197–1206. https://doi.org/10.1038/ni.3838

Article  CAS  PubMed  Google Scholar 

Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K et al (2018) Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 19:1330–1340. https://doi.org/10.1038/s41590-018-0251-7

Article  CAS  PubMed  Google Scholar 

Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R et al (2018) Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. https://doi.org/10.1016/j.cmet.2018.06.021

Article  PubMed  Google Scholar 

Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL et al (2021) Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab. https://doi.org/10.1016/j.cmet.2021.03.023

Article  PubMed  Google Scholar 

Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P (2018) Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. https://doi.org/10.3390/nu10111564

Article  PubMed  PubMed Central  Google Scholar 

Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR et al (2021) Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593:282–288. https://doi.org/10.1038/s41586-021-03442-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leone RD, Zhao L, Englert JM, Sun I-M, Oh M-H, Sun I-H et al (2019) Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science (New York, NY) 366:1013–1021. https://doi.org/10.1126/science.aav2588

Article  CAS  Google Scholar 

Arts RJW, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24:807–819. https://doi.org/10.1016/j.cmet.2016.10.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oh M-H, Sun I-H, Zhao L, Leone RD, Sun I-M, Xu W et al (2020) Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Investig 130:3865–3884. https://doi.org/10.1172/JCI131859

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loftus RM, Assmann N, Kedia-Mehta N, O’Brien KL, Garcia A, Gillespie C et al (2018) Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat Commun 9:2341. https://doi.org/10.1038/s41467-018-04719-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu H, Jin L-P, Huang H-L, Ha S-Y, Yang H-L, Chang R-Q et al (2020) Trophoblast-derived CXCL12 promotes CD56 CD82 CD29 NK cell enrichment in the decidua. Am J Reprod Immunol. https://doi.org/10.1111/aji.13203

Article  PubMed  PubMed Central  Google Scholar 

Yang S-L, Tan H-X, Niu T-T, Li D-J, Wang H-Y, Li M-Q (2021) Kynurenine promotes the cytotoxicity of NK cells through aryl hydrocarbon receptor in early pregnancy. J Reprod Immunol 143:103270. https://doi.org/10.1016/j.jri.2020.103270

Article  CAS  PubMed  Google Scholar 

Mei J, Zhou W-J, Zhu X-Y, Lu H, Wu K, Yang H-L et al (2018) Suppression of autophagy and HCK signaling promotes PTGS2 FCGR3 NK cell differentiation triggered by ectopic endometrial stromal cells. Autophagy 14:1376–1397. https://doi.org/10.1080/15548627.2018.1476809

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsen OE, Skjærvik A, Størdal BF, Sundan A, Holien T (2017) TGF-β contamination of purified recombinant GDF15. PLoS ONE 12:e0187349. https://doi.org/10.1371/journal.pone.0187349

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong G, Stewart RL, Chen J, Gao T, Scott TL, Samayoa LM et al (2018) Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun 9:4456. https://doi.org/10.1038/s41467-018-06893-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC et al (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell. https://doi.org/10.1016/j.cell.2018.10.001

Article  PubMed  PubMed Central  Google Scholar 

Nachef M, Ali AK, Almutairi SM, Lee S-H (2021) Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment. Front Immunol 12:624324. https://doi.org/10.3389/fimmu.2021.624324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH et al (2020) A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. https://doi.org/10.1016/j.cmet.2019.11.020

Article  PubMed 

留言 (0)

沒有登入
gif