A novel mechanism for the protection against acute lung injury by melatonin: mitochondrial quality control of lung epithelial cells is preserved through SIRT3-dependent deacetylation of SOD2

Peukert K, Fox M, Schulz S, Feuerborn C, Frede S, Putensen C, Wrigge H, Kümmerer B, David S, Seeliger B, Welte T, Latz E, Klinman D, Wilhelm C, Steinhagen F, Bode C (2021) Inhibition of caspase-1 with tetracycline ameliorates acute lung injury. Am J Respir Crit Care Med 204(1):53–63

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X (2017) Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol 12:311–324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du M, Garcia J, Christie J, Xin J, Cai G, Meyer N, Zhu Z, Yuan Q, Zhang Z, Su L, Shen S, Dong X, Li H, Hutchinson J, Tejera P, Lin X, Wang M, Chen F, Christiani D (2021) Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Med 47(7):761–771

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heijnen N, Hagens L, Smit M, Cremer O, Ong D, van der Poll T, van Vught L, Scicluna B, Schnabel R, van der Horst I, Schultz M, Bergmans D, Bos L (2021) Biological Subphenotypes of Acute Respiratory Distress Syndrome Show Prognostic Enrichment in Mechanically Ventilated Patients without Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 203(12):1503–1511

Article  PubMed  Google Scholar 

Hu R, Xu H, Jiang H, Zhang Y, Sun Y (2013) The role of TLR4 in the pathogenesis of indirect acute lung injury. Front Biosci (Landmark edition) 18:1244–1255

Article  CAS  Google Scholar 

Y. Zhou, P. Li, A. Goodwin, J. Cook, P. Halushka, E. Chang, B. Zingarelli, H. Fan, Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury, Critical care (London, England) 23(1) (2019) 44.

Bock F, Tait S (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100

Article  CAS  PubMed  Google Scholar 

Deshwal S, Fiedler K, Langer T (2020) Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu Rev Biochem 89:501–528

Article  CAS  PubMed  Google Scholar 

Banoth B, Cassel S (2018) Mitochondria in innate immune signaling. Transl Res 202:52–68

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie L, Shi F, Tan Z, Li Y, Bode A, Cao Y (2018) Mitochondrial network structure homeostasis and cell death. Cancer Sci 109(12):3686–3694

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Yao Y, Lu Z (2019) Mitochondrial quality control mechanisms as potential therapeutic targets in sepsis-induced multiple organ failure. J Mol Med (Berl) 97(4):451–462

Article  CAS  PubMed  Google Scholar 

Zhao G, Cao K, Xu C, Sun A, Lu W, Zheng Y, Li H, Hong G, Wu B, Qiu Q, Lu Z (2017) Crosstalk between Mitochondrial Fission and Oxidative Stress in Paraquat-Induced Apoptosis in Mouse Alveolar Type II Cells. Int J Biol Sci 13(7):888–900

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou L, Zhang J, Liu Y, Fang H, Liao L, Wang Z, Yuan J, Wang X, Sun J, Tang B, Chen H, Ye P, Ding Z, Lu H, Wang Y, Wang X (2021) MitoQ alleviates LPS-mediated acute lung injury through regulating Nrf2/Drp1 pathway. Free Radical Biol Med 165:219–228

Article  CAS  Google Scholar 

Zhou Z, Tan E (2020) Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson’s disease. Ageing Res Rev 62:101107

Article  CAS  PubMed  Google Scholar 

Kane A, Sinclair D (2018) Sirtuins and NAD in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circ Res 123(7):868–885

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Sharma, S. Bhattarai, H. Ara, G. Sun, D. St Clair, M. Bhuiyan, C. Kevil, M. Watts, P. Dominic, T. Shimizu, K. McCarthy, H. Sun, M. Panchatcharam, S. Miriyala, SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy, Redox biology 37 (2020) 101740.

Pi H, Xu S, Reiter R, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Zhang R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z (2015) SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy 11(7):1037–1051

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Kurundkar, A. Kurundkar, N. Bone, E. Becker, W. Liu, B. Chacko, V. Darley-Usmar, J. Zmijewski, V. Thannickal, SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury, JCI insight 4(1) (2019).

Lerner A, Case J, Takahashi Y (1960) Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem 235:1992–1997

Article  CAS  PubMed  Google Scholar 

Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C (2017) Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr Neuropharmacol 15(3):434–443

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boutin J, Witt-Enderby P, Sotriffer C, Zlotos D (2020) Melatonin receptor ligands: A pharmaco-chemical perspective. J Pineal Res 69(3):e12672

Article  CAS  PubMed  Google Scholar 

M. Zhai, B. Li, W. Duan, L. Jing, B. Zhang, M. Zhang, L. Yu, Z. Liu, B. Yu, K. Ren, E. Gao, Y. Yang, H. Liang, Z. Jin, S. Yu, Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis, Journal of pineal research 63(2) (2017).

Liu L, Chen H, Jin J, Tang Z, Yin P, Zhong D, Li G (2019) Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci 239:117036

Article  CAS  PubMed  Google Scholar 

Zhang Y, Li X, Grailer J, Wang N, Wang M, Yao J, Zhong R, Gao G, Ward P, Tan D, Li X (2016) Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res 60(4):405–414

Article  CAS  PubMed  Google Scholar 

Z. Ding, X. Wu, Y. Wang, S. Ji, W. Zhang, J. Kang, J. Li, G. Fei, Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3β/Nrf2 pathway, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 132 (2020) 110827.

Li J, Liu L, Zhou X, Lu X, Liu X, Li G, Long J (2020) Melatonin Attenuates Sepsis-Induced Acute Lung Injury Through Improvement of Epithelial Sodium Channel-Mediated Alveolar Fluid Clearance Via Activation of SIRT1/SGK1/Nedd4-2 Signaling Pathway. Front Pharmacol 11:590652

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ning L, Wei W, Wenyang J, Rui X, Qing G (2020) Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide. Clin Transl Med 10(7):e228

Article  PubMed  PubMed Central  Google Scholar 

Di S, Wang Z, Hu W, Yan X, Ma Z, Li X, Li W, Gao J (2020) The Protective Effects of Melatonin Against LPS-Induced Septic Myocardial Injury: A Potential Role of AMPK-Mediated Autophagy. Front Endocrinol (Lausanne) 11:162

Article  PubMed  Google Scholar 

Mao K, Luo P, Geng W, Xu J, Liao Y, Zhong H, Ma P, Tan Q, Xia H, Duan L, Song S, Long D, Liu Y, Yang T, Wu Y, Jin Y (2021) An Integrative Transcriptomic and Metabolomic Study Revealed That Melatonin Plays a Protective Role in Chronic Lung Inflammation by Reducing Necroptosis. Front Immunol 12:668002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou L, Zhang J, Liu Y, Fang H, Liao L, Wang Z, Yuan J, Wang X, Sun J, Tang B, Chen H, Ye P, Ding Z, Lu H, Wang Y, Wang X (2021) MitoQ alleviates LPS-mediated acute lung injury through regulating Nrf2/Drp1 pathway. Free Radic Biol Med 165:219–228

Article  CAS  PubMed  Google Scholar 

Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q (2019) STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol 24:101215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi J, Yu T, Song K, Du S, He S, Hu X, Li X, Li H, Dong S, Zhang Y, Xie Z, Li C, Yu J (2021) Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol 41:101954

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez H, Finocchietto PV, Alippe Y, Rebagliati I, Elguero ME, Villalba N, Poderoso JJ, Carreras MC (2018) p66(Shc) Inactivation Modifies RNS Production, Regulates Sirt3 Activity, and Improves Mitochondrial Homeostasis. Delaying the Aging Process in Mouse Brain, Oxid Med Cell Longev 2018:8561892

PubMed  Google Scholar 

Singh C, Chhabra G, Ndiaye M, Garcia-Peterson L, Mack N, Ahmad N (2018) The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 28(8):643–661

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Y, Zou X, Dean A, Brien J, Gao Y, Tran E, Park S, Liu G, Kieffer M, Jiang H, Stauffer M, Hart R, Quan S, Satchell K, Horikoshi N, Bonini M, Gius D (2019) Lysine 68 acetylation directs MnSOD as a tetrameric detoxification complex versus a monomeric tumor promoter. Nat Commun 10(1):2399

Article  PubMed  PubMed Central  Google Scholar 

Dubocovich M, Masana M, Iacob S, Sauri D (1997) Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedebergs Arch Pharmacol 355(3):365–375

Article  CAS  PubMed  Google Scholar 

Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S (2021) Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 116(1):49

Article  CAS  PubMed 

留言 (0)

沒有登入
gif