RBM24 controls cardiac QT interval through CaMKIIδ splicing

GrayHeller Brown CBJ (2014) CaMKIIdelta subtypes: localization and function. Front Pharmacol 5:15. https://doi.org/10.3389/fphar.2014.00015

Article  CAS  Google Scholar 

Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92(8):904–911. https://doi.org/10.1161/01.RES.0000069685.20258.F1

Article  CAS  PubMed  Google Scholar 

Beckendorf J, van den HoogenhofBacks MMGJ (2018) Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 113(4):29. https://doi.org/10.1007/s00395-018-0688-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Gao H, Liu D, Zhong X, Shi X, Yu P, Jin L, Liu Y, Tang Y, Song Y, Liu J, Hu X, Li CY, Song L, Qin J, Wu F, Lan F, Zhang Y, Xiao RP (2019) CaMKII-delta9 promotes cardiomyopathy through disrupting UBE2T-dependent DNA repair. Nat Cell Biol 21(9):1152–1163. https://doi.org/10.1038/s41556-019-0380-8

Article  CAS  PubMed  Google Scholar 

Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG (2021) CaMKIIdelta splice variants in the healthy and diseased heart. Front Cell Dev Biol 9:644630. https://doi.org/10.3389/fcell.2021.644630

Article  PubMed  PubMed Central  Google Scholar 

Sag CM, Wadsack DP, Khabbazzadeh S, Abesser M, Grefe C, Neumann K, Opiela MK, Backs J, Olson EN, Brown JH, Neef S, Maier SK, Maier LS (2009) Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail 2(6):664–675. https://doi.org/10.1161/CIRCHEARTFAILURE.109.865279

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JR Jr, Ye Z, Liu F, Rosenfeld MG, Manley JL, Ross J Jr, Chen J, Xiao RP, Cheng H, Fu XD (2005) ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120(1):59–72. https://doi.org/10.1016/j.cell.2004.11.036

Article  CAS  PubMed  Google Scholar 

van den Hoogenhof MMG, Beqqali A, Amin AS, van der Made I, Aufiero S, Khan MAF, Schumacher CA, Jansweijer JA, van Spaendonck-Zwarts KY, Remme CA, Backs J, Verkerk AO, Baartscheer A, Pinto YM, Creemers EE (2018) RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138(13):1330–1342. https://doi.org/10.1161/CIRCULATIONAHA.117.031947

Article  CAS  PubMed  Google Scholar 

Li C, Cai X, Sun H, Bai T, Zheng X, Zhou XW, Chen X, Gill DL, Li J, Tang XD (2011) The deltaA isoform of calmodulin kinase II mediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway. Biochem Biophys Res Commun 409(1):125–130. https://doi.org/10.1016/j.bbrc.2011.04.128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu XQ, Soo SY, Sun W, Zweigerdt R (2009) Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem Cells 27(9):2163–2174. https://doi.org/10.1002/stem.166

Article  CAS  PubMed  Google Scholar 

Poon KL, Tan KT, Wei YY, Ng CP, Colman A, Korzh V, Xu XQ (2012) RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility. Cardiovasc Res 94(3):418–427. https://doi.org/10.1093/cvr/cvs095

Article  CAS  PubMed  Google Scholar 

Yang J, Hung LH, Licht T, Kostin S, Looso M, Khrameeva E, Bindereif A, Schneider A, Braun T (2014) RBM24 is a major regulator of muscle-specific alternative splicing. Dev Cell 31(1):87–99. https://doi.org/10.1016/j.devcel.2014.08.025

Article  CAS  PubMed  Google Scholar 

Zhang T, Lin Y, Liu J, Zhang ZG, Fu W, Guo LY, Pan L, Kong X, Zhang MK, Lu YH, Huang ZR, Xie Q, Li WH, Xu XQ (2016) Rbm24 regulates alternative splicing switch in embryonic stem cell cardiac lineage differentiation. Stem Cells 34(7):1776–1789. https://doi.org/10.1002/stem.2366

Article  CAS  PubMed  Google Scholar 

Liu J, Kong X, Lee YM, Zhang MK, Guo LY, Lin Y, Lim TK, Lin Q, Xu XQ (2017) Stk38 Modulates Rbm24 protein stability to regulate sarcomere assembly in cardiomyocytes. Sci Rep 7:44870. https://doi.org/10.1038/srep44870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Kong X, Zhang M, Yang X, Xu X (2019) RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy. Protein Cell 10(6):405–416. https://doi.org/10.1007/s13238-018-0578-8

Article  CAS  PubMed  Google Scholar 

Zheng L, Yuan H, Zhang M, Wang C, Cai X, Liu J, Xu XQ (2020) Rbm24 regulates inner-ear-specific alternative splicing and is essential for maintaining auditory and motor coordination. RNA Biol. https://doi.org/10.1080/15476286.2020.1817265

Article  PubMed  PubMed Central  Google Scholar 

Zhang M, Han Y, Liu J, Liu L, Zheng L, Chen Y, Xia R, Yao D, Cai X, Xu X (2020) Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing. Theranostics 10(24):11159–11177. https://doi.org/10.7150/thno.44389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitchell GF, JeronKoren AG (1998) Measurement of heart rate and Q–T interval in the conscious mouse. Am J Physiol 274(3):H747-751. https://doi.org/10.1152/ajpheart.1998.274.3.H747

Article  CAS  PubMed  Google Scholar 

Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS (2016) A simplified, Langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res 119(8):909–920. https://doi.org/10.1161/CIRCRESAHA.116.309202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ (2018) Classification and reporting of potentially proarrhythmic common genetic variation in long QT syndrome genetic testing. Circulation 137(6):619–630. https://doi.org/10.1161/CIRCULATIONAHA.117.030142

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz PJ, Ackerman MJ, Antzelevitch C, Bezzina CR, Borggrefe M, Cuneo BF, Wilde AAM (2020) Inherited cardiac arrhythmias. Nat Rev Dis Prim 6(1):58. https://doi.org/10.1038/s41572-020-0188-7

Article  PubMed  Google Scholar 

Ljubojevic-Holzer S, Herren AW, Djalinac N, Voglhuber J, Morotti S, Holzer M, Wood BM, Abdellatif M, Matzer I, Sacherer M, Radulovic S, Wallner M, Ivanov M, Wagner S, Sossalla S, von Lewinski D, Pieske B, Brown JH, Sedej S, Bossuyt J, Bers DM (2020) CaMKIIdeltaC drives early adaptive Ca(2+) change and late eccentric cardiac hypertrophy. Circ Res 127(9):1159–1178. https://doi.org/10.1161/CIRCRESAHA.120.316947

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Brown JH (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92(8):912–919. https://doi.org/10.1161/01.RES.0000069686.31472.C5

Article  CAS  PubMed  Google Scholar 

Le Quang K, Benito B, Naud P, Qi XY, Shi YF, Tardif JC, Gillis MA, Dobrev D, Charpentier F, Nattel S (2013) T-type calcium current contributes to escape automaticity and governs the occurrence of lethal arrhythmias after atrioventricular block in mice. Circ Arrhythm Electrophysiol 6(4):799–808. https://doi.org/10.1161/CIRCEP.113.000407

Article  CAS  PubMed  Google Scholar 

Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, Feilotter H, Amenta S, Mazza D, Bikker H, Sturm AC, Garcia J, Ackerman MJ, Hershberger RE, Perez MV, Zareba W, Ware JS, Wilde AAM, Gollob MH (2020) An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation 141(6):418–428. https://doi.org/10.1161/CIRCULATIONAHA.119.043132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hof T, Simard C, Rouet R, Salle L, Guinamard R (2013) Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm 10(11):1683–1689. https://doi.org/10.1016/j.hrthm.2013.08.014

Article  PubMed  Google Scholar 

Wiedmann F, Schlund D, Kraft M, Nietfeld J, Katus HA, Schmidt C, Thomas D (2020) Electrophysiological effects of non-vitamin K antagonist oral anticoagulants on atrial repolarizing potassium channels. Europace 22(9):1409–1418. https://doi.org/10.1093/europace/euaa129

Article  PubMed  Google Scholar 

Hegyi B, BersBossuyt DMJ (2019) CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 127:246–259. https://doi.org/10.1016/j.yjmcc.2019.01.001

Article  CAS  PubMed  Google Scholar 

Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Fabritz L, Kirchhof P, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2(3):285–294. https://doi.org/10.1161/CIRCEP.108.842799

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang LL, Pfahnl AE, Sanyal S, Jiao Z, Allen J, Banach K, Fahrenbach J, Weiss D, Taylor WR, Zafari AM, Dudley SC Jr (2007) Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ Res 101(11):1146–1154. https://doi.org/10.1161/CIRCRESAHA.107.152918

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukuyama M, Ohno S, Wang Q, Shirayama T, Itoh H, Horie M (2014) Nonsense-mediated mRNA decay due to a CACNA1C splicing mutation in a patient with Brugada syndrome. Heart Rhythm 11(4):629–634. https://doi.org/10.1016/j.hrthm.2013.12.011

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif