Cellular interactions in the pituitary stem cell niche

Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13(4):433–45

Article  CAS  PubMed  Google Scholar 

Rizzoti K, Akiyama H, Lovell-Badge R (2013) Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13(4):419–432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gehart H, Clevers H (2019) Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol 16(1):19–34

Article  PubMed  Google Scholar 

Kopp JL, Grompe M, Sander M (2016) Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 18(3):238–245

Article  CAS  PubMed  Google Scholar 

Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287(5457):1427–1430

Article  CAS  PubMed  Google Scholar 

Baylis PH (1983) Posterior pituitary function in health and disease. Clin Endocrinol Metab 12(3):747–770

Article  CAS  PubMed  Google Scholar 

Raetzman LT, Cai JX, Camper SA (2007) Hes1 is required for pituitary growth and melanotrope specification. Dev Biol 304(2):455–466

Article  CAS  PubMed  Google Scholar 

Goldberg LB, Aujla PK, Raetzman LT (2011) Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev Biol 358(1):23–32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gage PJ, Suh H, Camper SA (1999) The bicoid-related Pitx gene family in development. Mamm Genome 10(2):197–200

Article  CAS  PubMed  Google Scholar 

Tremblay JJ, Lanctot C, Drouin J (1998) The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 12(3):428–441

Article  CAS  PubMed  Google Scholar 

Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C, Gleiberman AS, Izpisua-Belmonte JC, Rosenfeld MG (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13(4):484–494

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129(2):329–337

Article  CAS  PubMed  Google Scholar 

Dasen JS, Rosenfeld MG (1999) Signaling mechanisms in pituitary morphogenesis and cell fate determination. Curr Opin Cell Biol 11(6):669–677

Article  CAS  PubMed  Google Scholar 

Takuma N, Sheng HZ, Furuta Y, Ward JM, Sharma K, Hogan BL, Pfaff SL, Westphal H, Kimura S, Mahon KA (1998) Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 125(23):4835–4840

Article  CAS  PubMed  Google Scholar 

Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–69

Article  CAS  PubMed  Google Scholar 

Carreno G, Apps JR, Lodge EJ, Panousopoulos L, Haston S, Gonzalez-Meljem JM, Hahn H, Andoniadou CL, Martinez-Barbera JP (2017) Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development 144(18):3289–3302

CAS  PubMed  PubMed Central  Google Scholar 

Ericson J, Norlin S, Jessell TM, Edlund T (1998) Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125(6):1005–1015

Article  CAS  PubMed  Google Scholar 

Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG (1998) Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12(11):1691–1704

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenfeld MG, Briata P, Dasen J, Gleiberman AS, Kioussi C, Lin C, O’Connell SM, Ryan A, Szeto DP, Treier M (2000) Multistep signaling and transcriptional requirements for pituitary organogenesis in vivo. Recent Prog Horm Res 55:1–13

CAS  PubMed  Google Scholar 

Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y (2012) Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 24(9):1201–1212

Article  CAS  PubMed  Google Scholar 

Sheng HZ, Westphal H (1999) Early steps in pituitary organogenesis. Trends Genet 15(6):236–240

Article  CAS  PubMed  Google Scholar 

Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30(7):790–829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dasen JS, Rosenfeld MG (2001) Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci 24:327–355

Article  CAS  PubMed  Google Scholar 

Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang SP, Mahon KA, Westphal H (1996) Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272(5264):1004–1007

Article  CAS  PubMed  Google Scholar 

Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H (1997) Multistep control of pituitary organogenesis. Science 278(5344):1809–1812

Article  CAS  PubMed  Google Scholar 

De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127(3):483–492

Article  PubMed  Google Scholar 

Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P (2002) The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 129(16):3783–3793

Article  CAS  PubMed  Google Scholar 

Cha KB, Douglas KR, Potok MA, Liang H, Jones SN, Camper SA (2004) WNT5A signaling affects pituitary gland shape. Mech Dev 121(2):183–194

Article  CAS  PubMed  Google Scholar 

Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, Wu W, Taketo MM, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld MG (2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125(3):593–605

Article  CAS  PubMed  Google Scholar 

Potok MA, Cha KB, Hunt A, Brinkmeier ML, Leitges M, Kispert A, Camper SA (2008) WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn 237(4):1006–1020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brinkmeier ML, Potok MA, Davis SW, Camper SA (2007) TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol 311(2):396–407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paez-Pereda M, Kuchenbauer F, Arzt E, Stalla GK (2005) Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix. Braz J Med Biol Res 38(10):1487–1494

Article  CAS  PubMed  Google Scholar 

Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14(8):467–473

Article  CAS  PubMed  Google Scholar 

Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, Szarowska B, Landova M, Matejova VK, Holla LI, Kuchler U, Zdrilic IV, Vijaykumar A, Balic A, Marangoni P, Klein OD, Neves VCM, Yianni V, Sharpe PT, Harkany T, Metscher BD, Bajenoff M, Mina M, Fried K, Kharchenko PV, Adameyko I (2020) Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun 11(1):4816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horacek MJ, Thompson JC, Dada MO, Terracio L (1993) The extracellular matrix components laminin, fibronectin, and collagen IV are present among the epithelial cells forming Rathke’s pouch. Cells Tissues Organs 147(2):69–74

留言 (0)

沒有登入
gif