Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum

Fanning, S. et al. Bifidobacterial surface-exopolysaccharide facilitates commensal–host interaction through immune modulation and pathogen protection. Proc. Natl Acad. Sci. USA 109, 2108–2113 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andlid, T. A., D’Aimmo, M. R. & Jastrebova, J. in The Bifidobacteria and Related Organisms (eds Mattarelli, P., Biavati, B., Holzapfel, W. H. & Wood, B. J. B.) 195–212 (Elsevier, 2018).

Moya-Pérez, A., Perez-Villalba, A., Benítez-Páez, A., Campillo, I. & Sanz, Y. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav. Immun. 65, 43–56 (2017).

Article  PubMed  Google Scholar 

Luck, B. et al. Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Sci. Rep. 10, 7737 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milani, C. et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl. Environ. Microbiol. 82, 980–991 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung, D. H. et al. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. Int. J. Biol. Macromol. 161, 389–397 (2020).

Article  CAS  PubMed  Google Scholar 

la Rosa, S. L. et al. Wood-derived dietary fibers promote beneficial human gut microbiota. mSphere 4, e00554-18 (2019).

PubMed  PubMed Central  Google Scholar 

Yamada, C. et al. Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chem. Biol. 24, 515–524 (2017).

Article  CAS  PubMed  Google Scholar 

Katoh, T. et al. Enzymatic adaptation of Bifidobacterium bifidum to host glycans, viewed from glycoside hydrolases and carbohydrate-binding modules. Microorganisms 8, 481 (2020).

Article  CAS  PubMed Central  Google Scholar 

Higel, F., Seidl, A., Sörgel, F. & Friess, W. N-Glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur. J. Pharm. Biopharm. 100, 94–100 (2016).

Article  CAS  PubMed  Google Scholar 

Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

Article  CAS  PubMed  Google Scholar 

Bjursell, M. K., Martens, E. C. & Gordon, J. I. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J. Biol. Chem. 281, 36269–36279 (2006).

Article  CAS  PubMed  Google Scholar 

Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemsworth, G. R., Déjean, G., Davies, G. J. & Brumer, H. Learning from microbial strategies for polysaccharide degradation. Biochem. Soc. Trans. 44, 94–108 (2016).

Article  CAS  PubMed  Google Scholar 

Foley, M. H., Cockburn, D. W. & Koropatkin, N. M. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell. Mol. Life Sci. 73, 2603–2617 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuskin, F. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robb, M. et al. Molecular characterization of N-glycan degradation and transport in Streptococcus pneumoniae and its contribution to virulence. PLoS Pathog. 13, e1006090 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Dupoiron, S. et al. The N-glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J. Biol. Chem. 290, 6022–6036 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Briliūtė, J. et al. Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nat. Microbiol. 4, 1571–1581 (2019).

Article  PubMed  Google Scholar 

Trastoy, B. et al. Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides. Nat. Commun. 11, 889 (2020).

Google Scholar 

Higgins, M. A. et al. N-Glycan degradation pathways in gut- and soil-dwelling Actinobacteria share common core genes. ACS Chem. Biol. 16, 701–711 (2021).

Article  CAS  PubMed  Google Scholar 

Reichenbach, T. et al. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS ONE 13, e0204703 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Cordeiro, R. L. et al. N-Glycan utilization by Bifidobacterium gut symbionts involves a specialist β-mannosidase. J. Mol. Biol. 431, 732–747 (2019).

Article  CAS  PubMed  Google Scholar 

Garrido, D. et al. Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol. Cell Proteomics 11, 775–785 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schell, M. A. et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl Acad. Sci. USA 99, 14422–14427 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trombetta, E. S., Simons, J. F. & Helenius, A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271, 27509–27516 (1996).

Article  CAS  PubMed  Google Scholar 

Parche, S. et al. Sugar transport systems of Bifidobacterium longum NCC2705. J. Mol. Microbiol. Biotechnol. 12, 9–19 (2006).

Google Scholar 

Caescu, C. I., Vidal, O., Krzewinski, F., Artenie, V. & Bouquelet, S. Bifidobacterium longum requires a fructokinase (Frk; ATP:d-fructose 6-phosphotransferase, EC 2.7.1.4) for fructose catabolism. J. Bacteriol. 186, 6515–6525 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fushinobu, S. Unique sugar metabolic pathways of bifidobacteria. Biosci. Biotechnol. Biochem. 74, 2374–2384 (2010).

Article  CAS  PubMed  Google Scholar 

Gregg, K. J. et al. Analysis of a new family of widely distributed metal-independent α-mannosidases provides unique insight into the processing of N-linked glycans. J. Biol. Chem. 286, 15586–15596 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shah, N., Kuntz, D. A. & Rose, D. R. Golgi α-mannosidase II cleaves two sugars sequentially in the same catalytic site. Proc. Natl Acad. Sci. USA 105, 9570–9575 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nielsen, J. W. et al. Metal-ion dependent catalytic properties of sulfolobus solfataricus class II α-mannosidase. Biochemistry 51, 8039–8046 (2012).

Article  CAS  PubMed  Google Scholar 

Sonnenburg, J. L., Chen, C. T. L. & Gordon, J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 4, 2213–2226 (2006).

Article  CAS  Google Scholar 

Bertipaglia, C. et al. Higher-order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle. EMBO Rep. 17, 1044–1060 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, J., Wang, Y. Y., Du, L. L. & Ye, K. Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1. FEBS Open Bio 10, 2437–2451 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suits, M. D. L. et al. Structure and kinetic investigation of Streptococcus pyogenes family GH38 α-mannosidase. PLoS ONE 5, e9006 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Suzuki, T. et al. Man2C1, an α-mannosidase, is involved in the trimming of free oligosaccharides in the cytosol. Biochem. J. 400, 33–41 (2006).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif