Deep mutational scan of a drug efflux pump reveals its structure–function landscape

Theodoulou, F. L. & Kerr, I. D. ABC transporter research: going strong 40 years on. Biochem. Soc. Trans. 43, 1033–1040 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).

Article  CAS  PubMed  Google Scholar 

Schumacher, M. A., Miller, M. C. & Brennan, R. G. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. EMBO J. 23, 2923–2930 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eicher, T. et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl Acad. Sci. USA 109, 5687–5692 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006).

Article  CAS  PubMed  Google Scholar 

Alam, A., Kowal, J., Broude, E., Roninson, I. & Locher, K. P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363, 753–775 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le, C. A., Harvey, D. S. & Aller, S. G. Structural definition of polyspecific compensatory ligand recognition by P-glycoprotein. IUCrJ 7, 663–672 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debruycker, V. et al. An embedded lipid in the multidrug transporter LmrP suggests a mechanism for polyspecificity. Nat. Struct. Mol. Biol. 27, 829–835 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heng, J. et al. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA. Cell Res. 25, 1060–1073 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saini, P. et al. Alanine scanning of transmembrane helix 11 of Cdr1p ABC antifungal efflux pump of Candida albicans: identification of amino acid residues critical for drug efflux. J. Antimicrob. Chemother. 56, 77–86 (2005).

Article  CAS  PubMed  Google Scholar 

Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zinkus-Boltz, J., DeValk, C. & Dickinson, B. C. A phage-assisted continuous selection approach for deep mutational scanning of protein–protein interactions. ACS Chem. Biol. 14, 2757–2767 (2019).

Article  CAS  PubMed  Google Scholar 

Romero, P. A., Tran, T. M. & Abate, A. R. Dissecting enzyme function with microfluidic-based deep mutational scanning. Proc. Natl Acad. Sci. USA 112, 7159–7164 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srikant, S. & Gaudet, R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat. Struct. Mol. Biol. 26, 792–801 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas, C. et al. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett. 594, 3767–3775 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hürlimann, L. M. et al. The heterodimeric ABC transporter EfrCD mediates multidrug efflux in Enterococcus faecalis. Antimicrob. Agents Chemother. 60, 5400–5411 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Hürlimann, L. M., Hohl, M. & Seeger, M. A. Split tasks of asymmetric nucleotide-binding sites in the heterodimeric ABC exporter EfrCD. FEBS J. 284, 1672–1687 (2017).

Article  PubMed  Google Scholar 

Hohl, M. et al. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. Proc. Natl Acad. Sci. USA 111, 11025–11030 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fowler, D. M. et al. High-resolution mapping of protein sequence–function relationships. Nat. Methods 7, 741–746 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rubin, A. F. et al. A statistical framework for analyzing deep mutational scanning data. Genome Biol. 18, 150 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kowalsky, C. A. et al. High-resolution sequence-function mapping of full-length proteins. PLoS ONE 10, e0118193 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Luedtke, N. W., Liu, Q. & Tor, Y. On the electronic structure of ethidium. Chemistry 11, 495–508 (2005).

Article  CAS  PubMed  Google Scholar 

Mazurkiewicz, P., Poelarends, G. J., Driessen, A. J. M. & Konings, W. N. Facilitated drug influx by an energy-uncoupled secondary multidrug transporter. J. Biol. Chem. 279, 103–108 (2004).

Article  CAS  PubMed  Google Scholar 

Swain, B. M. et al. Complexities of a protonatable substrate in measurements of Hoechst 33342 transport by multidrug transporter LmrP. Sci. Rep. 10, 20026 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambudkar, S. V. et al. Partial-purification and reconstitution of the human multidrug-resistance pump—characterization of the drug-stimulatable ATP hydrolysis. Proc. Natl Acad. Sci. USA 89, 8472–8476 (1992).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnold, F. M. et al. The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature 580, 413–441 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Shawi, M. K., Polar, M. K., Omote, H. & Figler, R. A. Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein. J. Biol. Chem. 278, 52629–52640 (2003).

Article  CAS  PubMed  Google Scholar 

Hegedus, C. et al. Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv. Drug Delivery Rev. 61, 47–56 (2009).

Article  CAS  Google Scholar 

Loo, T. W. & Clarke, D. M. Mutational analysis of ABC proteins. Arch. Biochem. Biophys. 476, 51–64 (2008).

Article  CAS  PubMed  Google Scholar 

Tutulan-Cunita, A. C., Mikoshi, M., Mizunuma, M., Hirata, D. & Miyakawa, T. Mutational analysis of the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity. Genes Cells 10, 409–420 (2005).

Article  CAS  PubMed  Google Scholar 

Srikant, S., Gaudet, R. & Murray, A. W. Selecting for altered substrate specificity reveals the evolutionary flexibility of ATP-binding cassette transporters. Curr. Biol. 30, 1689–1702 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schuster, S. et al. Random mutagenesis of the multidrug transporter AcrB from Escherichia coli for identification of putative target residues of efflux pump inhibitors. Antimicrob. Agents Chemother. 58, 6870–6878 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Swartz, D. J. et al. Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci. Rep. 10, 3224 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adler, J. & Bibi, E. Promiscuity in the geometry of electrostatic interactions between the Escherichia coli multidrug resistance transporter MdfA and cationic substrates. J. Biol. Chem. 280, 2721–2729 (2005).

Article  CAS  PubMed  Google Scholar 

Tirosh, O. et al. Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. Proc. Natl Acad. Sci. USA 109, 12473–12478 (2012).

Article  CAS  PubMed  PubMed Central  Google Sch

留言 (0)

沒有登入
gif