The pursuit of xanthenoid fluorophores with near-infrared-II emission for in vivo applications

Baeyer A. Ueber eine neue Klasse von Farbstoffen. Ber Dtsch Chem Ges. 1871;4(2):555–8.

Article  Google Scholar 

Noelting E, Dziewoński K. Zur Kenntniss der Rhodamine. Ber Dtsch Chem Ges. 1905;38(3):3516–27.

Article  CAS  Google Scholar 

Zhou W, Fang XN, Qiao QL, Jiang WC, Zhang Y, Xu ZC. Quantitative assessment of rhodamine spectra. Chin Chem Lett. 2021;32(2):943–6.

Article  CAS  Google Scholar 

Zhang X, Chen L, Huang Z, Ling N, Xiao Y. Cyclo-ketal xanthene dyes: a new class of near-infrared fluorophores for super-resolution imaging of live cells. Chem Eur J. 2021;27(11):3688–93.

Article  CAS  PubMed  Google Scholar 

Keerthana S, Sam B, George L, Sudhakar YN, Varghese A. Fluorescein based fluorescence sensors for the selective sensing of various analytes. J Fluoresc. 2021;31(5):1251–76.

Article  Google Scholar 

Wang L, Du W, Hu Z, Uvdal K, Li L, Huang W. Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging. Angew Chem Int Ed Engl. 2019;58(40):14026–43.

Article  CAS  PubMed  Google Scholar 

Luo X, Li J, Zhao J, Gu L, Qian X, Yang Y. A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes. Chin Chem Lett. 2019;30(4):839–46.

Article  CAS  Google Scholar 

Li J, Zhang M, Yang L, Han Y, Luo X, Qian X, et al. “Xanthene” is a premium bridging group for xanthenoid dyes. Chin Chem Lett. 2021;32(12):3865–9.

Article  CAS  Google Scholar 

Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao Z, Hong G, Shinji C, Chen C, Diao S, Antaris AL, et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed. 2013;52(49):13002–6.

Article  CAS  Google Scholar 

Kowada T, Maeda H, Kikuchi K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem Soc Rev. 2015;44(14):4953–72.

Article  CAS  PubMed  Google Scholar 

Zhang R, Yuan J. Responsive metal complex probes for time-gated luminescence biosensing and imaging. Acc Chem Res. 2020;53(7):1316–29.

Article  CAS  PubMed  Google Scholar 

Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, et al. Determination and imaging of small biomolecules and ions using ruthenium(II) complex-based chemosensors. Top Curr Chem (Cham). 2022;380(5):29.

Article  CAS  PubMed  Google Scholar 

Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15(2):235–42.

Article  CAS  PubMed  Google Scholar 

Du Y, Liu X, Zhu S. Near-infrared-II cyanine/polymethine dyes, current state and perspective. Front Chem. 2021;9:718709.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cosco ED, Arus BA, Spearman AL, Atallah TL, Lim I, Leland OS, et al. Bright chromenylium polymethine dyes enable fast, four-color in vivo imaging with shortwave infrared detection. J Am Chem Soc. 2021;143(18):6836–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cosco ED, Spearman AL, Ramakrishnan S, Lingg JGP, Saccomano M, Pengshung M, et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat Chem. 2020;12(12):1123–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cosco ED, Caram JR, Bruns OT, Franke D, Day RA, Farr EP, et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angew Chem Int Ed Engl. 2017;56(42):13126–9.

Article  CAS  PubMed  Google Scholar 

Ding B, Xiao Y, Zhou H, Zhang X, Qu C, Xu F, et al. Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow. J Med Chem. 2019;62(4):2049–59.

Article  CAS  PubMed  Google Scholar 

Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, et al. Counterion-paired bright heptamethine fluorophores with NIR-II excitation and emission enable multiplexed biomedical imaging. Angew Chem Int Ed Engl. 2022;61(24):e202117436.

Article  CAS  PubMed  Google Scholar 

Wang Y, Lei Z, Wang C, Cao C, Hu J, Du L, et al. Unsymmetrical pentamethine cyanines for visualizing physiological acidities from the whole-animal to the cellular scale with pH-responsive deep-red fluorescence. RSC Adv. 2021;11(29):17871–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pei P, Hu H, Chen Y, Wang S, Chen J, Ming J, et al. NIR-II ratiometric lanthanide-dye hybrid nanoprobes doped bioscaffolds for in situ bone repair monitoring. Nano Lett. 2022;22(2):783–91.

Article  CAS  PubMed  Google Scholar 

Li K, Duan X, Jiang Z, Ding D, Chen Y, Zhang GQ, et al. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat Commun. 2021;12(1):2376.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, et al. Bright and stable NIR-II J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging. Angew Chem Int Ed Engl. 2021;60(8):3967–73.

Article  CAS  PubMed  Google Scholar 

Godard A, Kalot G, Pliquett J, Busser B, Le Guevel X, Wegner KD, et al. Water-soluble aza-BODIPYs: biocompatible organic dyes for high contrast in vivo NIR-II imaging. Bioconjug Chem. 2020;31(4):1088–92.

Article  CAS  PubMed  Google Scholar 

Bai L, Sun P, Liu Y, Zhang H, Hu W, Zhang W, et al. Novel aza-BODIPY based small molecular NIR-II fluorophores for in vivo imaging. Chem Commun. 2019;55(73):10920–3.

Article  CAS  Google Scholar 

Liu D, He Z, Zhao Y, Yang Y, Shi W, Li X, et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J Am Chem Soc. 2021;143(41):17136–43.

Article  CAS  PubMed  Google Scholar 

Yang QL, Ma HL, Liang YY, Dai HJ. Rational design of high brightness NIR-II organic dyes with S-D-A-D-S structure. Accounts Mater Res. 2021;2(3):170–83.

Article  CAS  Google Scholar 

Zhou HJ, Ren TB. Recent progress of cyanine fluorophores for NIR-II sensing and imaging. Chem Asian J. 2022;17(8):e202200147.

Article  CAS  PubMed  Google Scholar 

Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, et al. The chemistry of organic contrast agents in the NIR-II window. Angew Chem Int Ed Engl. 2022;61(14):e202114722.

Article  CAS  PubMed  Google Scholar 

Wang Z, She M, Chen J, Cheng Z, Li J. Rational modulation strategies to improve bioimaging applications for organic NIR‐II fluorophores. Adv Opt Mater. 2021:10(2): 2101634.

Wang S, Li B, Zhang F. Molecular fluorophores for deep-tissue bioimaging. ACS Cent Sci. 2020;6(8):1302–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gong L, Shan X, Zhao XH, Tang L, Zhang XB. Activatable NIR-II fluorescent probes applied in biomedicine: progress and perspectives. ChemMedChem. 2021;16(16):2426–40.

Article  CAS  PubMed  Google Scholar 

Li C, Chen G, Zhang Y, Wu F, Wang Q. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J Am Chem Soc. 2020;142(35):14789–804.

Article  CAS  PubMed  Google Scholar 

Zhao X, Zhang F, Lei Z. The pursuit of polymethine fluorophores with NIR-II emission and high brightness for in vivo applications. Chem Sci. 2022;13(38):11280–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei Z, Zhang F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew Chem Int Ed Engl. 2021;60(30):16294–308.

Article  CAS  PubMed  Google Scholar 

Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging applications. Curr Opin Chem Biol. 2010;14(1):64–70.

Article  CAS  PubMed  Google Scholar 

Yang Y, Lowry M, Xu X, Escobedo JO, Sibrian-Vazquez M, Wong L, et al. Seminaphthofluorones are a family of water-soluble, low molecular weight, NIR-emitting fluorophores. Proc Natl Acad Sci U S A. 2008;105(26):8829–34.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif